
J. Math. Anal. Appl. 555 (2026) 130047

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications  

journal homepage: www.elsevier.com/locate/jmaa

Regular Articles

On critical logarithmic double phase problems with locally 

defined perturbation

Yino B. Cueva Carranza a, Marcos T.O. Pimenta a, Francesca Vetro b, 
Patrick Winkert c,∗

a Departamento de Matemática e Computação, Universidade Estadual Paulista - Unesp, CEP: 19060-900, 
Presidente Prudente - SP, Brazil
b Scientific Research Center, Baku Engineering University, Khirdalan City, Baku, Absheron, Azerbaijan
c Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany

a r t i c l e i n f o a b s t r a c t 

Article history:
Received 14 April 2025
Available online 4 September 2025
Submitted by Hirokazu Ninomiya

Keywords:
Critical growth
Existence results
Logarithmic double phase operator
Logarithmic Musielak-Orlicz spaces
Multiple solutions
Sign-changing solutions

This paper deals with critical logarithmic double phase problems of the form

− div𝒦(u) = g(x, u) + |u|p∗−2u in Ω, u = 0 on ∂Ω,

where div𝒦 is the logarithmic double phase operator defined by

div
(︃
|∇u|p−2∇u + μ(x)

(︃
log(e + |∇u|) +

|∇u| 
q(e + |∇u|)

)︃
|∇u|q−2∇u

)︃
,

e is Euler’s number, Ω ⊂ RN , N ≥ 2, is a bounded domain with Lipschitz boundary 
∂Ω, 1 < p < N , p < q < p∗ = Np 

N−p
, 0 ≤ μ(·) ∈ L∞(Ω) and g : Ω × [−ξ, ξ] → R

for ξ > 0 is a locally defined Carathéodory function satisfying a certain behavior 
near the origin. Based on appropriate truncation techniques and a suitable auxiliary 
problem, we prove the existence of a whole sequence of sign-changing solutions of 
the problem above which converges to 0 in the logarithmic Musielak-Orlicz Sobolev 
space W 1,ℋlog

0 (Ω) and in L∞(Ω).
© 2025 The Author(s). Published by Elsevier Inc. This is an open access article 

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the recent work by Arora–Crespo-Blanco--Winkert [5], the authors introduced and studied the prop
erties of the functional
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I(u) =
∫︂
Ω 

(︃ |∇u|p
p 

+ μ(x) |∇u|q
q

log(e + |∇u|)
)︃

dx (1.1)

and of the corresponding logarithmic double phase operator given by

div𝒦(u) = div
(︃
|∇u|p−2∇u + μ(x)

(︃
log(e + |∇u|) + |∇u| 

q(e + |∇u|)
)︃
|∇u|q−2∇u

)︃
, (1.2)

with u ∈ W
1,ℋlog
0 (Ω) being the related logarithmic Musielak-Orlicz Sobolev space while

ℋlog(x, t) = tp + μ(x)tq log(e + t) for all (x, t) ∈ Ω × [0,∞),

for 1 < p < N , p < q and 0 ≤ μ(·) ∈ L∞(Ω). In the past, special cases of the functional given in (1.1) have 
been investigated. The local Hölder continuity of the gradient of local minimizers of

u ↦→
∫︂
Ω 

[︂
|∇u|p + μ(x)|∇u|p log(e + |∇u|)

]︂
dx,

(p = q in (1.1)), was shown by Baroni–Colombo--Mingione [7] for 1 < p < ∞ and 0 ≤ μ(·) ∈ C0,α(Ω)
while in a more recent work by De Filippis–Mingione [9], the local Hölder continuity of the gradient of local 
minimizers of the functional

u ↦→
∫︂
Ω 

[︁|∇u| log(1 + |∇u|) + μ(x)|∇u|q]︁dx, (1.3)

has been examined whenever 0 ≤ μ(·) ∈ C0,α(Ω) and 1 < q < 1+ α
n . It should be noted that (1.3) originates 

from functionals with nearly linear growth of the form

u ↦→
∫︂
Ω 

|∇u| log(1 + |∇u|) dx, (1.4)

which has been studied, for example, in the papers by Fuchs–Mingione [13] and Marcellini–Papi [25]. We 
point out that (1.4) occur in the theory of plasticity with logarithmic hardening, see, for example, Seregin--
Frehse [34] and Fuchs–Seregin [14]. Moreover, the famous work of Marcellini [24] includes as a special case 
functionals with logarithmic term of the form

u ↦→
∫︂
Ω 

(1 + |∇u|2) p
2 log(1 + |∇u|) dx.

In the present work we study critical elliptic problems involving the logarithmic double phase operator 
given in (1.2). To be more precise, given a bounded domain Ω ⊆ RN , N ≥ 2, with Lipschitz boundary ∂Ω, 
we investigate the Dirichlet problem

− div𝒦(u) = g(x, u) + |u|p∗−2u in Ω, u = 0 on ∂Ω, (1.5)

where div𝒦 is as in (1.2) while we suppose the following assumptions on the exponents p, q, the weight 
function μ(·) and the perturbation g(·, ·):

(A1) 1 < p < N , p < q < p∗ := Np 
N−p and 0 ≤ μ(·) ∈ L∞(Ω);
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(A2) g : Ω × [−ξ, ξ] → R is a Carathéodory function for fixed ξ > 0 with g(x, 0) = 0 and g(x, ·) is odd for 
a.a. x ∈ Ω;

(A3) there exists η ∈ L∞(Ω) such that

|g(x, s)| ≤ η(x) for a.a. x ∈ Ω and for all |s| ≤ ξ;

(A4) there exists γ ∈
(︂
1,min

{︂
p, p2

N−p + 1
}︂)︂

such that

lim 
s→0

g(x, s) 
|s|γ−2s

= 0 uniformly for a.a. x ∈ Ω;

(A5)

lim 
s→0

g(x, s) 
|s|p−2s

= +∞ uniformly for a.a. x ∈ Ω.

We call a function u ∈ W
1,ℋlog
0 (Ω) a weak solution of problem (1.5) if

∫︂
Ω 

(︃
|∇u|p−2∇u + μ(x)

(︃
log(e + |∇u|) + |∇u| 

q(e + |∇u|)
)︃
|∇u|q−2∇u

)︃
· ∇φ dx

=
∫︂
Ω 

(︂
g(x, u) + |u|p∗−2u

)︂
φ dx

is satisfied for all φ ∈ W
1,ℋlog
0 (Ω).

Our main result reads as follows.

Theorem 1.1. Suppose the assumptions (A1)--(A5), then problem (1.5) admits a sequence {wn}n∈N ⊆
W

1,ℋlog
0 (Ω)∩L∞(Ω) of sign-changing solutions such that ∥wn∥ → 0 and ∥wn∥∞ → 0 as n → ∞, where ∥ · ∥

and ∥ · ∥∞ are the norms in W 1,ℋlog
0 (Ω) and in L∞(Ω), respectively.

We point out that the right-hand side of (1.5) consists of the combined effect of a locally defined Cara
théodory perturbation g(x, ·) along with the critical term u → |u|p∗−2u with p∗ := Np 

N−p being the critical 
exponent related to the given number 1 < p < N . The main difficulty in the study of (1.5) is the appearance 
of the critical term and the lack of compactness. In order to overcome this fact, we are going to study an 
appropriate auxiliary problem by using suitable truncation functions which makes the auxiliary problem 
coercive. Then we are able to show the existence of extremal constant sign solutions of this auxiliary problem 
which will be used in order to apply the symmetric mountain pass theorem due to Kajikiya [19]. With our 
work, we are not only extending the work of Liu–Papageorgiou [22] from the double phase setting to the 
logarithmic double phase one, but we are also in the position to weaken the assumptions so that assumption 
H1 (iii) in [22] is not needed anymore. For additional information and details we also refer to Papageorgiou--
Vetro--Winkert [29] in which the double phase problem with variable exponent has been discussed.

As mentioned at the beginning of the Introduction, the logarithmic double phase operator (1.2) has been 
recently introduced and so only few papers exist involving such operator. The first one has been published 
by Arora–Crespo-Blanco--Winkert [5] who treated the problem

− div𝒦(u) = f(x, u) in Ω, u = 0 on ∂Ω, (1.6)
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where div𝒦 is as in (1.2) but with variable exponents and with a Carathéodory function f : Ω × R → R

having subcritical growth and a certain behavior at infinity and near the origin. The authors prove the 
existence of a least energy sign-changing solution by minimization of the related energy function over the 
corresponding Nehari manifold of (1.6) under the stronger assumption that q + 1 < p∗. We also refer to a 
recent work by the same authors [4] concerning new embeddings and existence results. Another logarithmic 
double phase operator different from the one in (1.2) has been introduced by Vetro–Zeng [40] who studied 
existence and uniqueness of equations involving the operator

u ↦→ ΔℋL
u = div

(︃ℋ′
L(x, |∇u|)
|∇u| ∇u

)︃
, u ∈ W 1,ℋL

0 (Ω),

where ℋL : Ω × [0,∞) → [0,∞) is given by

ℋL(x, t) = (tp + μ(x)tq) log(e + t),

with 1 < p < q and ℋ′
L stands for the derivative of ℋL with respect to the second variable. The operator (1.2)

also appeared in the work by Vetro–Winkert [39] who proved the boundedness, closedness and compactness 
of the solution set to the problem

− div𝒦(u) = f(x, u,∇u) in Ω, u = 0 on ∂Ω,

where div𝒦 is as in (1.2) but with variable exponents and f : Ω × R× RN → R is a convection term with 
very mild structures conditions. Finally, the operator in [39] is also involved in a Kirchhoff type context by 
Vetro [38].

We also mention the recent work by Tran–Nguyen [37] who showed existence results for equations in
volving (1.2) when p = q. In addition, we also refer to some works dealing with logarithmic perturbations 
on the right-hand side for Schrödinger equations or p-Laplace problems. In 2009, Montenegro–de Queiroz 
[26] studied the problem

−Δu = χu>0(log(u) + λf(x, u)) in Ω, u = 0 on ∂Ω, (1.7)

with a function f(x, ·) being nondecreasing and sublinear while fu is supposed to be continuous. They 
showed that problem (1.7) has a maximal solution uλ ≥ 0 of type C1,γ(Ω). We also refer to the works by 
Figueiredo–Montenegro--Stapenhorst [11,12] who considered a similar problem in planar domains with f
being of exponential growth. Furthermore, logarithmic Schrödinger equations of the form

−Δu + V (x)u = Q(x)u log(u2) in RN (1.8)

have been studied by Squassina–Szulkin [36] who showed the existence of infinitely many solutions of (1.8). 
More results for logarithmic Schrödinger equations have been published by Alves–de Morais Filho [2], 
Alves–Ji [3] and Shuai [35], see also Alves–da Silva [1] about logarithmic Schrödinger equations on exterior 
domains and Bahrouni–Fiscella--Winkert [6] for sign-changing potentials in RN . Finally, we mention some 
related works for double phase problems without logarithmic terms, see the papers by Ge–Pucci [15], Guo--
Liang--Lin--Pucci [16], and Liu–Pucci [23].

The paper is organized as follows. In Section 2 we recall the main properties of the logarithmic Musielak
Orlicz Sobolev spaces and the logarithmic double phase operator (1.2). Moreover, we point out the main 
results about the eigenvalue problem of the p-Laplacian with homogeneous Dirichlet boundary condition. 
In Section 3 we first study an auxiliary problem and prove the existence of extremal constant sign solutions 
and then we apply the results of Kajikiya [19] to give the proof of Theorem 1.1.
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2. Preliminaries

This section is devoted to the main properties of logarithmic Musielak-Orlicz Sobolev spaces, the corre
sponding logarithmic double phase operator and some tools which will be used in the sequel. Most of the 
results are taken from the recent paper by Arora–Crespo-Blanco--Winkert [5]. We also refer to the mono
graphs by Diening–Harjulehto--Hästö--Růžička [10], Harjulehto–Hästö [17], Papageorgiou–Winkert [30] and 
the paper by Crespo-Blanco–Gasiński--Harjulehto--Winkert [8]. First, for 1 ≤ r ≤ ∞, Lr(Ω) stands for the 
usual Lebesgue space with norm ∥ · ∥r while W 1,r

0 (Ω) denotes the related Sobolev space with zero traces 
endowed with the equivalent norm ∥∇ · ∥r for 1 < r < ∞.

Now, we introduce the nonlinear map ℋlog : Ω × [0,∞) → [0,∞) defined by

ℋlog(x, t) = tp + μ(x)tq log(e + t),

where we assume hypothesis (A1). Denoting by M(Ω) the set of all measurable function u : Ω → R, we can 
introduce the space Lℋlog(Ω) by

Lℋlog(Ω) =

⎧⎨
⎩u ∈ M(Ω) : ρℋlog(u) :=

∫︂
Ω 

ℋlog(x, |u|) dx < ∞
⎫⎬
⎭ ,

equipped with the norm

∥u∥ℋlog := inf
{︂
λ > 0 : ρℋlog

(︂u 
λ

)︂
≤ 1

}︂
for u ∈ Lℋlog(Ω),

where ρℋlog is called modular function corresponding to ℋlog. We know that Lℋlog(Ω) is a separable and 
reflexive Banach space. The corresponding logarithmic Musielak-Orlicz Sobolev space W 1,ℋlog(Ω) is then 
given by

W 1,ℋlog(Ω) =
{︁
u ∈ Lℋlog(Ω) : |∇u| ∈ Lℋlog(Ω)

}︁
,

endowed with the norm

∥u∥1,ℋlog := ∥u∥ℋlog + ∥∇u∥ℋlog .

Furthermore, we set

W
1,ℋlog
0 (Ω) = C∞

c (Ω)
∥·∥1,ℋlog .

Note that both spaces W 1,ℋlog(Ω) and W 1,ℋlog
0 (Ω) are separable, reflexive Banach spaces. In addition, we 

can equip the space W 1,ℋlog
0 (Ω) with the equivalent norm

∥u∥ := ∥∇u∥ℋlog ,

see Arora–Crespo-Blanco--Winkert [5, Proposition 3.9]. In the following, we use the abbreviations 
ρℋlog(∇u) := ρℋlog(|∇u|) and ℋlog( · ,∇u) = ℋlog( · , |∇u|) for u ∈ W

1,ℋlog
0 (Ω).

The following embedding results can be found in the work by Arora–Crespo-Blanco--Winkert [5, Propo
sition 3.7]. 
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Proposition 2.1. Let hypotheses (A1) be satisfied. Then the following hold:

(i) W
1,ℋlog
0 (Ω) ↪→ W 1,p

0 (Ω) is continuous;
(ii) W

1,ℋlog
0 (Ω) ↪→ Lp∗(Ω) is continuous;

(iii) W
1,ℋlog
0 (Ω) ↪→ Lr(Ω) is compact for all 1 ≤ r < p∗.

Moreover, the relation between the norm ∥ · ∥ in W 1,ℋlog
0 (Ω) and the modular function ρℋlog is stated in 

the next proposition, see Arora–Crespo-Blanco--Winkert [5, Proposition 3.6]. In the following, we denote by 
κ the constant given by

κ = e 
e + t0

, (2.1)

where e is Euler’s number and t0 is the positive number that satisfies t0 = e log(e + t0).

Proposition 2.2. Let hypotheses (A1) be satisfied, λ > 0, u ∈ W
1,ℋlog
0 (Ω), and κ as in (2.1). Then the 

following hold:

(i) ∥u∥ = λ if and only if ρℋlog

(︁∇u
λ 
)︁

= 1;
(ii) ∥u∥ < 1 (resp. = 1, > 1) if and only if ρℋlog(∇u) < 1 (resp. = 1, > 1);
(iii) if ∥u∥ < 1 then ∥u∥q+κ ≤ ρℋlog(∇u) ≤ ∥u∥p;
(iv) if ∥u∥ > 1 then ∥u∥p ≤ ρℋlog(∇u) ≤ ∥u∥q+κ;
(v) ∥un∥ → 0 if and only if ρℋlog(∇un) → 0 as n → ∞.

The following lemma will be used later, see Arora–Crespo-Blanco--Winkert [5, Lemma 5.4].

Lemma 2.3. Let Q > 1 and h : [0,∞) → [0,∞) given by h(t) = t 
Q(e+t) log(e+t) . Then h attains its maximum 

value at t0 and the value is κ 
Q , where t0 and κ are the same as in (2.1).

Next, we introduce the nonlinear operator A : W 1,ℋlog
0 (Ω) → W

1,ℋlog
0 (Ω)∗ defined by

⟨A(u), v⟩ =
∫︂
Ω 

|∇u|p−2∇u · ∇v dx +
∫︂
Ω 

μ(x)
(︃

log(e + |∇u|) + |∇u| 
q(e + |∇u|)

)︃
|∇u|q−2∇u · ∇v dx, (2.2)

where ⟨ ·, · ⟩ denotes the duality pairing between W 1,ℋlog
0 (Ω) and its dual space W 1,ℋlog

0 (Ω)∗. The prop
erties of A : W 1,ℋlog

0 (Ω) → W
1,ℋlog
0 (Ω)∗ are summarized in the following proposition, see Arora–Crespo

Blanco--Winkert [5, Theorem 4.4].

Theorem 2.4. Let hypotheses (A1) be satisfied and A be given as in (2.2). Then A is bounded, continuous, 
strictly monotone, and satisfies the (S+)-property, that is, any sequence {un}n∈N ⊆ W

1,ℋlog
0 (Ω) such that 

un ⇀ u weakly in W 1,ℋlog
0 (Ω) and lim supn→∞⟨A(un), un − u⟩ ≤ 0 converges strongly to u in W 1,ℋlog

0 (Ω).

In the following, C1
0 (Ω) stands for the ordered Banach space given by

C1
0 (Ω) =

{︁
u ∈ C1(Ω) : u

⃓⃓
∂Ω = 0

}︁
,

while C1
0 (Ω)+ is the positive cone defined by

C1
0 (Ω)+ =

{︁
u ∈ C1

0 (Ω) : u(x) ≥ 0 for all x ∈ Ω
}︁
,



Y. Cueva Carranza et al. / J. Math. Anal. Appl. 555 (2026) 130047 7

which has a nonempty interior

int
(︁
C1

0 (Ω)+
)︁

=
{︃
u ∈ C1

0 (Ω) : u(x) > 0 ∀x ∈ Ω and 
∂u 
∂n

(x) < 0 ∀x ∈ ∂Ω
}︃
,

where n = n(x) is the outer unit normal at x ∈ ∂Ω. For any t ∈ R we put t± = max{±t, 0}, that is, 
t = t+ − t− and |t| = t+ + t−. Furthermore, for any function u : Ω → R we write u±(·) = [u(·)]±.

Let us now recall some known results about the eigenvalue problem of the p-Laplacian for 1 < p < ∞
with homogeneous Dirichlet boundary condition which is defined by

−Δpu = λ|u|p−2u in Ω, u = 0 on ∂Ω. (2.3)

We know from Lê [20] that there exists a smallest eigenvalue λ1 of (2.3) which is positive, isolated, simple 
and can be written as

λ1 = inf
{︃∥∇u∥pp

∥u∥pp : u ∈ W 1,p
0 (Ω), u ̸= 0

}︃
. (2.4)

We denote by u1 the Lp-normalized positive eigenfunction corresponding to λ1, that is, ∥u1∥p = 1. Fur
thermore, u1 ∈ int

(︁
C1

0 (Ω)+
)︁

due to the regularity theory of Lieberman [21] and the maximum principle by 
Pucci–Serrin [32].

Let X be a Banach space and X∗ be its dual space. We say that a functional φ ∈ C1(X) satisfies the 
Palais-Smale condition (PS-condition for short), if every sequence {un}n∈N ⊆ X such that {φ(un)}n∈N ⊆ R

is bounded and

φ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence. We also set

Kφ := {u ∈ X : φ′(u) = 0} ,

which is the set of all critical points of φ. Recall that a set 𝒮 ⊆ X is called downward directed if for given 
u1, u2 ∈ 𝒮 there exists u ∈ 𝒮 such that u ≤ u1 and u ≤ u2. Similarly, 𝒮 ⊆ X is called upward directed if for 
given v1, v2 ∈ 𝒮 one can find v ∈ 𝒮 such that v1 ≤ v and v2 ≤ v.

The proof of Theorem 1.1 relies on the following abstract critical point result established by Kajikiya 
[19, Theorem 1], which extends the symmetric mountain pass theorem.

Theorem 2.5. Let (X, ∥·∥) be an infinite dimensional Banach space and φ ∈ C1(X,R) such that the following 
hold:

(i) φ is even, bounded from below, φ(0) = 0 and it satisfies the (PS)-condition.
(ii) For any n ∈ N, there exist a n-dimensional subspace Xn of X and a number rn > 0 such that 

supXn∩Srn
φ(u) < 0, where Srn = {u ∈ X : ∥u∥ = rn}.

Then, the functional φ admits a sequence of critical points {vn}n∈N satisfying ∥vn∥ → 0 as n → ∞.

3. Asymptotically vanishing sign-changing solutions

We first study a truncated auxiliary problem which helps us to deal with the critical term in (1.5). To 
this end, let Ψ ∈ C1(R) be an even cut-off function such that
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supp Ψ ⊆ [−ξ, ξ], Ψ⃓⃓[︂−ξ
2 , ξ2 

]︂ ≡ 1 and 0 < Ψ ≤ 1 on (−ξ, ξ). (3.1)

Next, we introduce the function ϑ : Ω ×R → R by

ϑ(x, s) = Ψ(s)
[︂
g(x, s) + |s|p∗−2s

]︂
+ (1 − Ψ(s))|s|γ−2s, (3.2)

which is a Carathéodory function, whereby γ is from hypothesis (A4). It is easy to see that from the choice 
of Ψ in (3.1) along with (3.2) and (A4) we have the growth condition

|ϑ(x, s)| ≤ C
(︁
1 + |s|γ−1)︁ (3.3)

for a.a. x ∈ Ω and for all s ∈ R with some C > 0.
The strategy for dealing with the critical term in problem (1.5) relies on the cut-off function Ψ, intro

duced above and satisfying the properties listed in (3.1). In this framework, the function ϑ has subcritical 
growth (see (3.3)), and therefore, by considering the auxiliary problem formulated below, extremal constant 
sign solutions can be obtained through standard variational methods. Furthermore, Theorem 2.5 yields a 
sequence of sign-changing solutions wn to the auxiliary problem converging to zero. This convergence makes 
it possible to select a sufficiently large n0 ∈ N such that Ψ(wn(x)) = 1 for a.a. x ∈ Ω and for all n ≥ n0 (by 
virtue of the second property in (3.1)), which in turn ensures that ϑ coincides with the right-hand side of 
the original problem (1.5). Note again that the number ξ > 0 is fixed from the beginning, see (A2).

Now, we are interested in the solvability of the auxiliary problem

− div𝒦(u) = ϑ(x, u) in Ω, u = 0 on ∂Ω, (3.4)

where div𝒦(u) is the logarithmic double phase operator given in (1.2). We are going to prove the existence 
of extremal constant sign solutions of (3.4) which will be used in the construction of sign-changing solutions 
to our original problem (1.5). For this purpose, let 𝒮+ and 𝒮− be the sets of positive and negative solutions 
of problem (3.4), respectively. In the following, we denote by ℰ± : W 1,ℋlog

0 (Ω) → R the truncated energy 
functionals related to (3.4) given by

ℰ±(u) =
∫︂
Ω 

[︃
1 
p
|∇u|p + μ(x)

q
|∇u|q log(e + |∇u|)

]︃
dx−

∫︂
Ω 

Θ(x,±u±) dx, (3.5)

for all u ∈ W
1,ℋlog
0 (Ω), where Θ(x, s) =

∫︁ s

0 ϑ(x, t) dt. It is obvious to see that ℰ± ∈ C1(W 1,ℋlog
0 (Ω)).

First, we show that 𝒮± are nonempty.

Proposition 3.1. Let hypotheses (A1)--(A5) be satisfied. Then 𝒮+ and 𝒮− are nonempty subsets in 
W

1,ℋlog
0 (Ω) ∩ L∞(Ω).

Proof. We start by showing that 𝒮+ ̸= ∅. Due to

ℰ+(u) ≥ 1
q
ρℋlog(|∇u|) −

∫︂
Ω 

Θ(x, u+) dx

along with the growth in (3.3), γ < p by (A4) as well as Proposition 2.2 (iv), we see that ℰ+ is coercive. 
Moreover, from Proposition 2.1 (iii), we know that W 1,ℋlog

0 (Ω) ↪→ Lr(Ω) is compact for any 1 ≤ r < p∗. 
Therefore, the functional ℰ+ is also sequentially weakly lower semicontinuous. Then, we can find an element 
û ∈ W

1,ℋlog
0 (Ω) such that
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ℰ+(û) = inf
[︂
ℰ+(u) : u ∈ W

1,ℋlog
0 (Ω)

]︂
.

We show that û ̸= 0. Taking hypothesis (A5) into account, for each ε > 0, there exists ω ∈ (︁
0,min{ ξ

2 , 1}
)︁

such that

G(x, s) =
s ∫︂

0 

g(x, t) dt ≥ ε 
p
|s|p for all |s| ≤ ω. (3.6)

Recall that u1 ∈ int
(︁
C1

0 (Ω)+
)︁

is the Lp-normalized positive eigenfunction corresponding to λ1 of the 
eigenvalue problem (2.3). Now we choose t ∈ (0, 1) small enough such that tu1(x) ∈ (0, ω] for all x ∈ Ω. 
Then, since ω ∈ (︁

0,min{ ξ
2 , 1}

)︁
, we get from (3.1) that

ϑ(x, tu1) = g(x, tu1) + (tu1)p
∗−2tu1 ≥ g(x, tu1). (3.7)

Now, using the representation of λ1 in (2.4), ∥u1∥p = 1 and the inequality log(e+xy) ≤ log(e+x)+log(e+y)
for all x, y > 0 as well as (3.6) and (3.7), we obtain

ℰ+(tu1) =
∫︂
Ω 

[︃
1 
p
|∇(tu1)|p + μ(x)

q
|∇(tu1)|q log(e + t|∇u1|)

]︃
dx

−
∫︂
Ω 

Θ (x, tu1) dx

≤ tp

p 
λ1 + tq log(e + t)

q

∫︂
Ω 

μ(x)|∇u1|q dx

+ tq

q

∫︂
Ω 

μ(x)|∇u1|q log(e + |∇u1|) dx− tp

p 
ε

= tp

p 
(λ1 − ε) + tq log(e + t)

q

∫︂
Ω 

μ(x)|∇u1|q dx

+ tq

q

∫︂
Ω 

μ(x)|∇u1|q log(e + |∇u1|) dx.

(3.8)

Taking ε > λ1, we see from (3.8), for t > 0 sufficiently small, since p < q, that

ℰ+(tu1) < 0.

This shows that û ̸= 0.
Since û is a global minimizer of ℰ+, it holds ℰ ′

+(û) = 0, which means

∫︂
Ω 

(︃
|∇û|p−2∇û + μ(x)

(︃
log(e + |∇û|) + |∇û| 

q(e + |∇û|)
)︃
|∇û|q−2∇û

)︃
· ∇φ dx

=
∫︂
Ω 

ϑ(x, û+) φ dx

for all φ ∈ W
1,ℋlog
0 (Ω). Testing the above equation with φ = −û− ∈ W

1,ℋlog
0 (Ω) (see Arora–Crespo

Blanco--Winkert [5, Proposition 3.8 (iii)]) yields û− = 0. Therefore, û ≥ 0 and since û ̸= 0, it is a nontrivial 
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positive weak solution of problem (3.4). This proves 𝒮+ ̸= ∅ and from Rădulescu–Stapenhorst--Winkert [33], 
we know that û ∈ W

1,ℋlog
0 (Ω) ∩ L∞(Ω).

Similarly, we can show the existence of a nontrivial negative bounded weak solution v̂ of problem (3.4)
which is the global minimizer of ℰ− : W 1,ℋlog

0 (Ω) → R defined in (3.5). □
In the next step, we will show that the auxiliary problem (3.4) has extremal constant sign solutions in 

the sense that there exist a smallest positive solution ũ ∈ 𝒮+ and a largest negative solution ṽ ∈ 𝒮−.

Proposition 3.2. Let hypotheses (A1)--(A5) be satisfied. Then there exists ũ ∈ 𝒮+ such that ũ ≤ u for all 
u ∈ 𝒮+ and there exists ṽ ∈ 𝒮− such that ṽ ≥ v for all v ∈ 𝒮−.

Proof. We start with the existence of ũ. First, note that the set 𝒮+ is downward directed. This is a standard 
proof and can be done as in the paper by Papageorgiou–Rădulescu--Repovš [28, Proposition 7]. From this 
fact, using Lemma 3.10 by Hu–Papageorgiou [18], there exists a decreasing sequence {un}n∈N ⊆ 𝒮+ such 
that

inf 
n∈N

un = inf 𝒮+.

As un ∈ 𝒮+ it holds

∫︂
Ω 

(︃
|∇un|p−2∇un

+ μ(x)
(︃

log(e + |∇un|) + |∇un| 
q(e + |∇un|)

)︃
|∇un|q−2∇un

)︃
· ∇φ dx

=
∫︂
Ω 

ϑ(x, un)φ dx

(3.9)

for all φ ∈ W
1,ℋlog
0 (Ω) and for all n ∈ N. Choosing φ = un ∈ W

1,ℋlog
0 (Ω) in (3.9) and using (3.3) as well as 

0 ≤ un ≤ u1 leads to

ρℋlog(∇un) =
∫︂
Ω 

|∇un|p dx +
∫︂
Ω 

μ(x)|∇un|q log(e + |∇un|) dx < c1

for some c1 > 0 and for all n ∈ N. Therefore, Proposition 2.2 (iii), (iv) implies that {un}n∈N ⊆ W
1,ℋlog
0 (Ω) is 

bounded. Furthermore, taking hypothesis (A4) into account, we see that γ < p2

N−p +1 and so Np (γ−1) < p∗. 
Next, we can take a number t > N

p such that t(γ − 1) < p∗. Then, by the boundedness of {un}n∈N ⊆
W

1,ℋlog
0 (Ω) and Proposition 2.1 (iii) we may assume that

un ⇀ ũ in W 1,ℋlog
0 (Ω) and un → ũ in Lt(γ−1)(Ω) (3.10)

for a subsequence if necessary (not relabeled) and ũ ∈ W
1,ℋlog
0 (Ω). Moreover, combining (3.1), (3.2) and 

hypothesis (A4) we get

|ϑ(x, s)| ≤ c2|s|γ−1 (3.11)

for a.a. x ∈ Ω, for all s ∈ R and for some c2 > 0. Now, from (3.9) and (3.11), because of t > N
p , we obtain 

that
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∥un∥∞ ≤ c3∥un∥
γ−1
p−1 
t(γ−1) (3.12)

for some c3 > 0 and for all n ∈ N. The proof of this result can be done as in Perera–Squassina [31, 
Proposition 2.4] since W 1,ℋlog

0 (Ω) ↪→ W 1,p
0 (Ω) by Proposition 2.1 (i).

We are going to prove that ũ ̸= 0. Suppose by contradiction that ũ = 0. Then from (3.10) and (3.12) we 
have ∥un∥∞ → 0 as n → +∞ which implies the existence of n0 ∈ N such that 0 < un(x) ≤ ω for a.a. x ∈ Ω
and for all n ≥ n0, where ω ∈ (︁

0,min{ ξ
2 , 1}

)︁
. Hence, taking (3.1) and (3.2) into account yields

ϑ(x, un(x)) = g(x, un(x)) + un(x)p
∗−1 (3.13)

for a.a. x ∈ Ω and for all n ≥ n0. Next, we set yn = un

∥un∥ for all n ∈ N which gives ∥yn∥ = 1 and yn ≥ 0 for 
all n ∈ N. Therefore, we may assume, for a subsequence if necessary (not relabeled), that

yn ⇀ y in W 1,ℋlog
0 (Ω) and yn → y in Lp(Ω)

for y ∈ W
1,ℋlog
0 (Ω) with y ≥ 0. Applying un = ∥un∥yn in (3.9) and using (3.13) results in

∫︂
Ω 

(︃
∥un∥p−1|∇yn|p−2∇yn

+ μ(x)∥un∥q−1
(︃

log(e + |∇un|) + |∇un| 
q(e + |∇un|)

)︃
|∇yn|q−2∇yn

)︃
· ∇φ dx

=
∫︂
Ω 

∥un∥p−1
[︃
g(x, un)
up−1
n

+ up∗−p
n

]︃
yp−1
n φ dx

for all φ ∈ W
1,ℋlog
0 (Ω) and for all n ≥ n0. From this we conclude that

∫︂
Ω 

(︃
|∇yn|p−2∇yn

+ μ(x)∥un∥q−p

(︃
log(e + |∇un|) + |∇un| 

q(e + |∇un|)
)︃
|∇yn|q−2∇yn

)︃
· ∇φ dx

=
∫︂
Ω 

[︃
g(x, un)
up−1
n

+ up∗−p
n

]︃
yp−1
n φ dx

(3.14)

for all φ ∈ W
1,ℋlog
0 (Ω) and for all n ≥ n0. Note that

log(e + |∇un|) = log(e + ∥un∥|∇yn|)

≤
{︄

log(e + |∇yn|) if ∥un∥ < 1,
∥un∥ log(e + |∇yn|) if ∥un∥ ≥ 1,

(3.15)

where we used in case ∥un∥ < 1 the monotonicity of the logarithmic function while for ∥un∥ ≥ 1 the standard 
inequality log(e+Ct) ≤ C log(e+ t) for all t ≥ 0 and C ≥ 1. Therefore, using (3.15) and Lemma 2.3, we see 
that the left-hand side of (3.14) is bounded for all φ ∈ W

1,ℋlog
0 (Ω) (similar to the proof of Theorem 4.4 by 

Arora–Crespo-Blanco--Winkert [5]) and so the same holds for the right-hand side of (3.14). But then, using 
(A5), we see that
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y = 0 and g(x, un(x))
un(x)p−1 yn(x)p−1 → 0 for a.a. x ∈ Ω.

Next, choosing φ = yn in (3.14) and passing to the limit as n → +∞, we arrive at

lim 
n→+∞

∫︂
Ω 

|∇yn|p dx = 0.

Therefore, we have ∇yn(x) → 0 for a.a. x ∈ Ω for a subsequence if necessary, not relabeled. This implies that 
ℋlog(x,∇yn) → 0 for a.a. x ∈ Ω. From Vitali’s convergence theorem we know that {ℋlog( · ,∇yn(·)}n∈N ⊂
L1(Ω) is uniformly integrable which yields

ρℋlog(∇yn) → 0 in W 1,ℋlog
0 (Ω). (3.16)

Recall that by construction we have ∥yn∥ = 1 for all n ∈ N. Taking Proposition 2.2 (ii) into account, this 
is equivalent to ρℋlog(∇yn) = 1 for all n ∈ N which is a contradiction to (3.16). Thus, we have ũ ̸= 0 and 
ũ ∈ 𝒮+ is the smallest positive solution of (3.4) in 𝒮+. Using similar arguments, one can prove that ṽ ∈ 𝒮−
such that ṽ = sup𝒮−. □
Remark 3.3. By definition, g(x, ·) is defined only locally. Then, because of hypothesis (A5), namely

lim 
s→0

g(x, s) 
|s|p−2s

= +∞ uniformly for a.a. x ∈ Ω,

without any loss of generality, we can assume that

g(x, s) 
|s|p−2s

> 0 for a.a. x ∈ Ω and for all |s| ≤ ξ.

This implies

g(x, s) > 0 for all 0 < s ≤ ξ and g(x, s) < 0 for all − ξ ≤ s < 0.

Let

[ṽ, ũ] :=
{︂
u ∈ W

1,ℋlog
0 (Ω) : ṽ(x) ≤ u(x) ≤ ũ(x) for a.a. x ∈ Ω

}︂
,

where ũ and ṽ are the extremal constant sign solutions from Proposition 3.2. Next, we introduce the cut-off 
function ϑ̃ : Ω ×R → R defined by

ϑ̃(x, s) :=

⎧⎪⎪⎨
⎪⎪⎩
ϑ(x, ṽ(x)) if s < ṽ(x),
ϑ(x, s) if ṽ(x) ≤ s ≤ ũ(x),
ϑ(x, ũ(x)) if ũ(x) < s

(3.17)

and consider the truncated C1-functional ℰ̃ : W 1,ℋlog
0 (Ω) → R by

ℰ̃(u) =
∫︂
Ω 

[︃
1 
p
|∇u|p + μ(x)

q
|∇u|q log(e + |∇u|)

]︃
dx−

∫︂
Ω 

Θ̃(x, u) dx,

for all u ∈ W
1,ℋlog
0 (Ω), where Θ̃(x, s) =

∫︁ s

0 ϑ̃(x, t) dt.
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Note that Kℰ̃ = {u ∈ W
1,ℋlog
0 (Ω) : (ℰ̃)′(u) = 0} ⊆ [ṽ, ũ]. Indeed, taking u ∈ Kℰ̃ \ {ũ, ṽ} gives

∫︂
Ω 

(︃
|∇u|p−2∇u

+ μ(x)
(︃

log(e + |∇u|) + |∇u| 
q(e + |∇u|)

)︃
|∇u|q−2∇u

)︃
· ∇φ dx

=
∫︂
Ω 

ϑ̃(x, u)φ dx for all φ ∈ W
1,ℋlog
0 (Ω).

(3.18)

Testing (3.18) with φ = (u− ũ)+ ∈ W
1,ℋlog
0 (Ω) and using that ũ solves (3.4), we obtain

⟨A(u), (u− ũ)+⟩

=
∫︂
Ω 

|∇u|p−2∇u · ∇(u− ũ)+ dx

+
∫︂
Ω 

μ(x)
(︃

log(e + |∇u|) + |∇u| 
q(e + |∇u|)

)︃
|∇u|q−2∇u · ∇(u− ũ)+ dx

=
∫︂
Ω 

ϑ̃(x, u)(u− ũ)+ dx

=
∫︂
Ω 

ϑ(x, ũ)(u− ũ)+ dx

=
∫︂
Ω 

|∇ũ|p−2∇ũ · ∇(u− ũ)+ dx

+
∫︂
Ω 

μ(x)
(︃

log(e + |∇ũ|) + |∇ũ| 
q(e + |∇ũ|)

)︃
|∇ũ|q−2∇ũ · ∇(u− ũ)+ dx

= ⟨A(ũ), (u− ũ)+⟩.

Therefore,

⟨A(u) −A(ũ), (u− ũ)+⟩ = 0,

which implies, due to the strict monotonicity of A (see Proposition 2.4), that u ≤ ũ. Testing (3.18) with 
φ = (ṽ − u)+ and reasoning as above shows that ṽ ≤ u. Thus, it holds Kℰ̃ ⊆ [ṽ, ũ].

Now, let V ⊆ W
1,ℋlog
0 (Ω) ∩ L∞(Ω) be a finite dimensional subspace.

Proposition 3.4. Let hypotheses (A1)--(A5) be satisfied. Then, there exists a number hV > 0 such that

sup
[︁ℰ̃(v) : v ∈ V, ∥v∥ = hV

]︁
< 0.

Proof. Recall that all norms on V are equivalent since V is finite dimensional (see Papageorgiou–Winkert 
[30, Proposition 3.1.17]). Then we can find hV > 0 such that

v ∈ V and ∥v∥ ≤ hV imply |v(x)| ≤ ω for a.a. x ∈ Ω,
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where ω ∈ (︁
0,min{ ξ

2 , 1}
)︁

is as in the proof of Proposition 3.1. Since ω < ξ
2 , by (3.1), we have Ψ(v(x)) = 1

for a.a. x ∈ Ω. From this, v ∈ V with ∥v∥ ≤ hV , we see that

ϑ̃(x, v(x)) =

⎧⎪⎪⎨
⎪⎪⎩
g(x, ṽ(x)) + |ṽ(x)|p∗−2ṽ(x) if v(x) < ṽ(x),
g(x, v(x)) + |v(x)|p∗−2v(x) if ṽ(x) ≤ v(x) ≤ ũ(x),
g(x, ũ(x)) + |ũ(x)|p∗−2ũ(x) if ũ(x) < v(x).

Let g̃ : Ω ×R → R be the function defined by

g̃(x, v(x)) =

⎧⎪⎪⎨
⎪⎪⎩
g(x, ṽ(x)) if v(x) < ṽ(x),
g(x, v(x)) if ṽ(x) ≤ v(x) ≤ ũ(x),
g(x, ũ(x)) if ũ(x) < v(x).

For G̃(x, s) :=
∫︁ s

0 g̃(x, t) dt and v < ṽ we have

G̃(x, v) =
ṽ∫︂

0 

g̃(x, s) ds +
v∫︂

ṽ

g̃(x, s) ds =
ṽ∫︂

0 

g(x, s) ds +
v∫︂

ṽ

g(x, ṽ) ds

= G(x, ṽ) + g(x, ṽ)(v − ṽ),

where G(x, s) =
∫︁ t

0 g(x, t) dt. By Remark 3.3, we know that g(x, ṽ) < 0 for a.a. x ∈ Ω. Then it follows 
g(x, ṽ)(v − ṽ) > 0 for a.a. x ∈ Ω and so

G(x, v) − G̃(x, v) = G(x, v) −G(x, ṽ) + g(x, ṽ)(ṽ − v)

≤ G(x, v) −G(x, ṽ).

Arguing in the same way, for ũ < v it holds

G̃(x, v) = G(x, ũ) + g(x, ũ)(v − ũ),

and so, since g(x, ũ)(ũ− v) < 0 by Remark 3.3,

G(x, v) − G̃(x, v) = G(x, v) −G(x, ũ) + g(x, ũ)(ũ− v)

≤ G(x, v) −G(x, ũ).

On account of this, we can write

ℰ̃(v) =
∫︂
Ω 

[︃
1 
p
|∇v|p + μ(x)

q
|∇v|q log(e + |∇v|)

]︃
dx−

∫︂
Ω 

Θ̃(x, v) dx

= 1 
p

∫︂
Ω 

|∇v|p dx + 1
q

∫︂
Ω 

μ(x)|∇v|q log(e + |∇v|) dx

−
∫︂

{x∈Ω : v(x)<ṽ(x)}

(︃
G̃(x, v) + 1 

p∗
|ṽ|p∗

)︃
dx

−
∫︂

{x∈Ω : ṽ(x)≤v(x)≤ũ(x)}

[︃
G(x, v) + 1 

p∗
|v|p∗

)︃
dx
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−
∫︂

{x∈Ω : ũ(x)<v(x)}

(︃
G̃(x, v) + 1 

p∗
|ũ|p∗

)︃
dx

≤ 1 
p

∫︂
Ω 

|∇v|p dx + 1
q

∫︂
Ω 

μ(x)|∇v|q log(e + |∇v|) dx

−
∫︂

{x∈Ω : v(x)<ṽ(x)}

G̃(x, v) dx

−
∫︂

{x∈Ω : ṽ(x)≤v(x)≤ũ(x)}

G(x, v) dx

−
∫︂

{x∈Ω : ũ(x)<v(x)}

G̃(x, v) dx

= 1 
p

∫︂
Ω 

|∇v|p dx + 1
q

∫︂
Ω 

μ(x)|∇v|q log(e + |∇v|) dx−
∫︂
Ω 

G(x, v) dx

+
∫︂

{x∈Ω : v(x)<ṽ(x)}

(︁
G(x, v) − G̃(x, v)

)︁
dx

+
∫︂

{x∈Ω : ũ(x)<v(x)}

(︁
G(x, v) − G̃(x, v)

)︁
dx

≤ 1 
p

∫︂
Ω 

|∇v|p dx + 1
q

∫︂
Ω 

μ(x)|∇v|q log(e + |∇v|) dx−
∫︂
Ω 

G(x, v) dx

+
∫︂

{x∈Ω : v(x)<ṽ(x)}

(G(x, v) −G(x, ṽ)) dx

+
∫︂

{x∈Ω : ũ(x)<v(x)}

(G(x, v) −G(x, ũ)) dx.

Recall (3.6), that is, by (A5), for each ε > 0, we can find ω ∈ (︁
0,min{ ξ

2 , 1}
)︁

such that

G(x, s) ≥ ε 
p
|s|p for all |s| ≤ ω. (3.19)

Now we can choose hV > 0 sufficiently small such that

∫︂
{x∈Ω : v(x)<ṽ(x)}

(G(x, v) −G(x, ṽ)) dx

+
∫︂

{x∈Ω : ũ(x)<v(x)}

(G(x, v) −G(x, ũ)) dx < ωp.

(3.20)

Using (3.19) and (3.20) in the observations above we obtain
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ℰ̃(v) ≤ 1 
p

∫︂
Ω 

|∇v|p dx + 1
q

∫︂
Ω 

μ(x)|∇v|q log(e + |∇v|) dx

− ε 
p

∫︂
Ω 

|v|p dx + ωp.

(3.21)

From Proposition 2.2 (iii), (iv) we know that
∫︂
Ω 

μ(x)|∇v|q log(e + |∇v|) dx ≤ ρℋlog(∇v) ≤ max{∥v∥p, ∥v∥q+κ}. (3.22)

Recall that all norms on V are equivalent since V is finite dimensional. Using this fact and (3.22) in (3.21)
we can find positive constants c1, c2, c3, independent of ω, such that

ℰ̃(v) ≤ c1∥v∥p∞ + c2 max{∥v∥p∞, ∥v∥q+κ
∞ } − εc3∥v∥p∞ + ωp.

Then, for v ∈ V with ∥v∥ = hV along with the equivalence of the norms on V , it follows, due to ω < 1, that

ℰ̃(v) ≤ c1ω
p + c2 max{ωp, ωq+κ} − εc3ω

p + ωp

= (c1 + c2 − εc3 + 1)ωp.

Choosing ε > c1+c2+1
c3

yields ℰ̃(v) < 0 for all v ∈ V with ∥v∥ = hV . □
Now we are in the position to prove Theorem 1.1 by applying the symmetric mountain pass theorem due 

to Kajikiya [19, Theorem 1].

Proof of Theorem 1.1. First note that the truncated functional ℰ̃ : W 1,ℋlog
0 (Ω) → R is even and coercive. In 

particular, it is bounded from below. Then, from Proposition 5.1.15 by Papageorgiou–Rădulescu--Repovš [27] 
we know that it fulfills the PS-condition. Using this and Proposition 3.4 we are able to apply Theorem 2.5
to get a sequence {wn}n∈N ⊂ W

1,ℋlog
0 (Ω) ∩ L∞(Ω) such that

wn ∈ Kℰ̃ ⊆ [ṽ, ũ], wn ̸= 0, ℰ̃(wn) ≤ 0 for all n ∈ N

and

∥wn∥ → 0 as n → +∞. (3.23)

Recall that the functions ṽ and ũ are the extremal constant sign solutions of (3.4), see Proposition 3.2. 
Since wn ∈ Kℰ̃ ⊆ [ṽ, ũ] and wn ̸= 0 for all n ∈ N, we know that wn is a critical point of ℰ̃ belonging to 
[ṽ, ũ]. Then, due to the truncation defined in (3.17), it follows that ϑ̃(x, s) = ϑ(x, s) for a.a. x ∈ Ω and for 
all s ∈ R. Therefore, wn is a solution of our auxiliary problem (3.4) and since wn ∈ [ṽ, ũ] with ṽ, ũ being 
the extremal constant sign solutions of (3.4), wn must be a sign-changing solution of problem (3.4) for all 
n ∈ N. Furthermore, as already pointed out in (3.12), we have the estimate

∥wn∥∞ ≤ C∥wn∥
γ−1
p−1 
t(γ−1)

for some C > 0 and for all n ∈ N with t > N
p and t(γ− 1) < p∗. Then, due to (3.23), we obtain ∥wn∥∞ → 0

as n → +∞. In addition, there exists a number n0 ∈ N such that |wn(x)| ≤ ξ
2 for a.a. x ∈ Ω and for all 

n ≥ n0. From this we deduce that Ψ(wn(x)) = 1 for a.a. x ∈ Ω and for all n ≥ n0, see (3.1). From this and 
(3.2) we see that wn is a sign-changing solution of problem (1.5) for all n > n0. □
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