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A B S T R A C T

This study provides the first-reported evidence that aliphatic structured surfactant, N-octylaminopropan-2-ol
(OSI), is a novel and effective inhibitor of the aggregation of acidic, island-structured crude oil asphaltenes (A-
ZO). The molecular mechanisms of OSI’s effective dispersion were elucidated using a combination of advanced
spectroscopic techniques and Density Functional Theory (DFT) calculations. Fourier Transform Infrared Spec-
troscopy (FT-IR) and Nuclear Magnetic Resonance (NMR) analyses revealed strong interactions between OSI and
A-ZO, including hydrogen bonding and acid-base interactions, which prevent asphaltene precipitation in crude
oil. Differential Thermal Analysis (DTA) confirmed the chemisorption of 12.5 % OSI onto A-ZO. Dynamic Light
Scattering (DLS) measurements showed a significant reduction in the average nanosize of A-ZO in hexane,
decreasing from 583 nm to 76 nm after treatment with OSI. Scanning Electron Microscopy (SEM) images of the
A-ZO and OSI mixture revealed the filling of deep grooves and cracks on the rough surface of the asphaltene
agglomerates, demonstrating the resin-like dispersion effect of OSI. DFT simulation reveals a binding energy of
− 28.2 kcal/mol for A-ZO and OSI complex formation. Noncovalent interaction (NCI) analysis shows that van der
Waals interactions occur [sign(λ2)ρ ≈ − 0.015 to +0.005 au] in a large region between the OSI saturated tail and
the A-ZO polycyclic aromatic fragment, which explains experimentally observed well-disperssed state of the
hexane + A-ZO mixture after the addition a certain amount of OSI. The detailed, data-driven analysis offers
unique molecular-level insights into asphaltene stabilization, presenting OSI as a significant alternative to
traditional inhibitors for the oil industry.

1. Introduction

Asphaltenes deposition is one of the drawbacks that reduce oil field
productivity [1,2] by clogging wells [3] and deteriorating reservoir rock
properties [4,5]. It also leads to undesirable situations such as pipeline
contamination [6,7] and increases the density and viscosity of hydro-
carbons during oil transportation [8,9] and refining [10,11]. In this
context, studying the aggregation process that leads to asphaltene
deposition and its mitigation using effective inhibitors (dispersants) is of

particular relevance for both Azerbaijani and global applications [12].
To address the above-mentioned oil production and transportation

limitations, the asphaltene physical properties and structure have been
extensively studied: asphaltene is insoluble in crude oil and low-
molecular-weight alkanes (n-pentane, n-hexane, and n-hexane, etc.)
[13,14], but soluble in light aromatic hydrocarbons (toluene, benzene,
pyridine, etc.) [15,16]. Its molecular structure contains heavy metals
(notably V + Ni: 0.0049–0.1795 %) and heteroatoms (N: 1–1.5 %, O:
7–14 %, S: 0.1–0.4 %) [17–19]. The asphaltene structure mainly consists
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of condensed polyaromatic rings with alkyl chains and cycloparaffins
[20,21]. The complex supramolecular asphaltene structure, known as
the heaviest and most polar oil component, is described by two main
models: the island model and the archipelago model [22]. In the island
model, alkyl chains substitute around polycyclic aromatic core, while in
the archipelago model, these cores are interconnected by alkyl chains
[23–27]. The weak interactions between asphaltene molecules (e.g. van
der Waals, hydrogen bonding, and π-π interactions) play a crucial role in
the asphaltene precipitation/deposition [28–32].

Many approaches have been proposed to prevent asphaltene depo-
sition [33,34], but only two methodologies have been widely utilized:
mechanical and the chemical treatments. Applying mechanical methods
is not feasible because of the high costs and the long time required for
effectiveness. Chemical treatment relies on the use of inhibitors such as
polymers, surfactants, ionic liquids, organic solvents, and nanoparticles
[35,36]. The application of anionic and non-anionic surfactants as in-
hibitors leads to the formation of new steric interactions between the
solvent and asphaltene aggregates [37,38]. In particular, the dissolution
of the surfactant inhibitor in the solvent results in complex salt forma-
tion because of the acidic and basic nature of the components (asphal-
tene and surfactant) [39–46]. The effectiveness of anionic and non-
anionic inhibitors depends on their polarity and molecular structure,
but their ability to disperse asphaltenes can be reduced if amphiphilic
molecules cluster together instead of interacting with asphaltene ag-
gregates [47–49]. In certain cases, asphaltene clustering can hinder in-
teractions with the dispersant and obstruct the steric protection
provided by alkane chains.

Surfactants such as cetyltrimethylammonium bromide (CTAB), so-
dium dodecyl sulfate (SDS), Triton X-100, etc., prevent asphaltene ag-
gregation by reducing intermolecular interactions. Cationic surfactants
(e.g., CTAB) disrupt asphaltene molecules through electrostatic repul-
sion and bind to their acidic groups. Anionic surfactants (e.g., SDS)
reduce asphaltene aggregation by creating hydrophilic interactions and
imparting a negative charge on the surface of asphaltene particles.
Nonionic surfactants (e.g.,Triton X-100) stabilize asphaltene particles in
solution by forming a protective monolayer around them [50–58].
However, several factors can reduce the effectiveness of these surfac-
tants, including their tendency to foam, interactions with other crude oil
components (e.g., resins and salts), high asphaltene concentrations, and
elevated thermobaric conditions [59–65]. These limitations can lead to
various technological issues, such as corrosion and contamination of
pipelines and equipment.

Benzoyl and salicylic acids, as inhibitors, exhibit aromatic solubility
and facilitate π-π and acid-base interactions, which help to mitigate
asphaltene aggregation and precipitation. However, their high toxicity,
prolonged environmental stability (leading to corrosion), and tendency
to form undesirable compounds with metal ions present significant
limitations [66–68].

An analysis of previous studies [69–73] revealed that asphaltene
inhibitors based on dodecylbenzene sulfonic acid (DBSA), ethoxylated
nonylphenols, salicylic acid, and vegetable oils exhibited varying inhi-
bition effects on the same oil sample. DBSA was found to be more
effective in asphaltene structures containing basic functional groups.
Depending on the properties of the asphaltene, the inhibitory effect of
sulfonic acids can be positive or negative. The interaction between the
high molecular weight asphaltenes and the inhibitor, through hydrogen
bonding or acid-base complex formation, reduces the probability of
asphaltene aggregation [62,74]. However, the precise nature and pri-
mary role of these interactions in asphaltene inhibition remain subjects
of scientific debate. For instance, Subramanian et al. suggested that acid-
base interactions play a secondary role, with the key mechanism,
possibly involving hydrogen bonding or van der Waals forces, still
needing precise identification [75]. Conversely, other studies, such as
Zhang et al. indicate that acid-base reactions are indeed the most
effective stabilizing mechanism, complemented by π-π interactions and
hydrogen bonding [76]. This perspective is further supported by Kashefi

et al. who reported that acid-containing inhibitors are particularly
effective against basic asphaltene aggregation, achieving notable
average particle size reductions: octyl phenol (55 %), synthesized deep
eutectic solvent (41 %), lauric acid (24 %), and dodecyl amine (18 %)
[77]. The higher inhibitory activity of nonylphenol compared to phenol
is attributed to the influence of its long peripheral alkane chain, which
enhances the polarity of the phenol OH functional group [78–80]. Some
inhibitors (e.g. resins, maltenes, etc.) do not demonstrate the same
dispersing properties as phenol and ethoxylated alcohols at low doses
(ppm) [81–83].

Crude oil resins are considered naturally available inhibitors that
prevent asphaltene clustering by providing stability to polar molecules
in a non-polar environment. A reduction in resin content has been found
to promote asphaltene aggregation and flocculation. Aliphatic solvents
cause resin desorption, further enhancing aggregation and flocculation.
To limit asphaltene deposition, dispersants were typically selected based
on the resin properties. Their effectiveness depends on their interaction
with polar groups of the asphaltene molecules and their adsorption onto
the surface of asphaltene aggregate [84–92].

DLS and DFT studies are pivotal for understanding asphaltene ag-
gregation and inhibitor mechanisms [93–99]. For instance, studies on
carbon nanoparticles used to counter asphaltene aggregation in unstable
crude oils revealed that the average nanosize of asphaltene aggregates
adsorbed onto carbon nanoparticles reduced from 1730 nm to 255 nm,
and in addition to strong hydrogen bonding and π–π interactions can
form between carbon nanoparticles and asphaltene molecules [100].
Kumar et al. investigated asphaltene aggregation in thymol-based deep
eutectic solvents using DFT and found that thymol-diphenyl ether
exhibited a higher solubility for asphaltenes [101]. Chávez-Miyauchi
et al. showed that N-aryl amino-alcohols, particularly boronic acid de-
rivatives with Lewis acid characteristics, have been shown to inhibit
asphaltene aggregation by forming stable tetrameric complexes. DFT
calculations and experimental studies identified that longer alkyl chains
enhance dispersion and inhibition efficiency [102].

Findings from the published literature indicated that several factors-
including molecular structure, polarity, solvent solubility, adsorption,
dosage, hydrogen bonding, and acid-base interactions-influence the ef-
ficacy of the listed inhibitors. In this study, we evaluate the performance
of the proposed basic surfactant, N-octylaminopropan-2-ol (OSI),
against island-structured acidic asphaltene molecules extracted from
crude oil, considering the key properties previously tested. Our research
provides comprehensive insights into the molecular behavior of this
new, effective inhibitor. The proposed surfactant effectively inhibits
asphaltene aggregation and deposition in crude oil and represents a
simply synthesizable alternative to existing inhibitors in the oil industry.

2. Materials and methods

All chemicals used in this study were of analytical grade: n-hexane
(≥99 %, Cat. No. 296090) and toluene (≥99.5 %, Cat. No. 244511) from
Sigma-Aldrich; octylamine (98 %, Cat. No. 00625) and propylene oxide
(≥99 %, Cat. No. 04010) for OSI synthesis from Sigma-Aldrich; and
deuterated chloroform (CDCl3, Cat. No. 151823) for NMR from Merck.

The intermolecular interactions between A-ZO and OSI were studied
using FT-IR spectroscopy (BRUKER) in the spectral range of 400–4000
cm− 1 with a resolution of 2 cm− 1, using a zinc selenide crystal at room
temperature.

The possible interactions in A-ZO + OSI complex were tracked using
1H and NOESY NMR spectra in a BRUKER-Fourier spectrometer (300
MHz) at room temperature. Tetramethylsilane was used as an internal
standard, and deuterated chloroform was applied as a solvent.

OSI adsorption on the A-ZO surface were determined using a ther-
mogravimetric analyzer (TG/DTG mode) of the NETZSCH STA449F3
Jupiter system in a temperature-programmed dynamic mode, at the
temperature range of 23–1000 ◦C with a temperature rise rate of 10 K/
min, and in an inert environment. The flow rate of the inert gas (N2) was
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20 ml/min, and the sample amount was ~ 10 mg. Prior to TG-DTG
measurements, vacuum pumping was employed in the sample cham-
ber to remove residual oxidative gases.

The change in asphaltene particle size in the A-ZO + OSI mixture was
studied using HORIBA LB 550 DLS. Measurements were performed
before and after the addition of OSI to the A-ZO-hexane and − toluene
solutions/mixtures at 298 K, using a laser diode light source with a
wavelength of 650 nm and a power of 5 mW. The measurement range is
between 1 nm–6 µm.

For the morphological characterization of the A-ZO, A-ZO and OSI
mixture, a Hitachi S-3400 N SEM with an OXFORD Instruments atomic
analyzer was used. The measurements were performed at an acceler-
ating voltage of 1–2 kV, a working distance of 6–7 mm and a magnifi-
cation range of 50-500x. A secondary electron detector and high vacuum
mode were used for the measurements.

All measurements were repeated in triplicate, with mean values re-
ported to ensure data reproducibility and reliability.

The asphaltene (A-ZO) used in the experiments was extracted from
the oil of the Zaghli field in East Azerbaijan, following the ASTM D6560-
12 standard [103]. The (A-ZO) structure was fully elucidated and re-
ported in our previous work [104]. The structure of A-ZO and synthe-
sized N-Octylaminopropan-2-ol inhibitor (OSI) is shown in Fig. 1.

It has been determined that the A-ZO cluster is a heterostructured (S-
S, C-S, and N–H bonds) molecule containing polycyclic aromatic com-
ponents, alkyl, cycloalkyl fragments, and a COOH group. According to
its structural model, this asphaltene is classified as an “island” type, with
approximately 50 % aromatic hydrocarbons in its composition [104].

The OSI is a yellowish, transparent, viscous liquid, synthesized based
on the reaction of octylamine and propylene oxide (1:1). The synthe-
sized product (OSI) is soluble in water, ethanol, acetone, hexane, kero-
sene, CCl4, and isopropanol. The OSI amine value was calculated as
289.2 mg KOH/g [105].

The A-ZO to OSI ratio in the conducted experiments was adjusted to
1:0.1, respectively. 5 % solutions of A-ZO were prepared using two
solvents: toluene and hexane. In a hexane solution, A-ZO precipitates
immediately, whereas in toluene, precipitation occurs after 90 min. The
incorporation of 5000 ppm of OSI into the A-ZO solutions resulted in a
stable suspension in hexane. However, no precipitation was observed in
the toluene solvent during a 10-hour monitoring period.

The Gaussian 16 program [106] was utilized for the optimization of
surfactant, asphaltene and surfactant and asphaltene complex struc-
tures. For the optimizations, Kohn-Sham DFT with the B3LYP functional
[107] and D3BJ dispersion corrections [108] was used. The 6-311G(d,p)
basis set was employed for all atoms. Solvent effects were considered via

Fig. 1. Molecular structures of OSI and A-ZO.

Fig. 2. FITR spectra of A-ZO (a), OSI (b), and their mixture (c).
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Fig. 3. 1H NMR (a, b, c) and NOESY NMR (d) spectra of OSI (a), A-ZO (b), and their mixture (c, d).
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a self-consistent reaction field and default polarizable continuum model
with the dielectric constant for n-hexane (ε = 1.8819). Gibbs energies
were calculated at 298.15 K to reflect the experimental room tempera-
ture conditions. Optimized geometries (in XYZ format, See SI, Table S1,
S2) of A-ZO are provided in the electronic supporting information (ESI).
The A-ZO + OSI complex binding energy (Eb) was calculated according
to the equation: Eb = EOSI+A− ZO − (EOSI +EA− ZO) where EOSI+A− ZO stands
for the total energy of the complex, while EOSI and EA− ZO are individual
total energies of OSI and A-ZO, respectively. Binding energy of the A-ZO
+ OSI was corrected using basis set superposition error (BSSE) according
to the counterpoise method [109]. The formchk file of the optimized A-
ZO + OSI was utilized as input in Multiwfn 3.8 [110] to generate NCI
analysis based on the reduced density gradient (RDG) and sign(λ2)ρ. The
data were then visualized with Gnuplot 6.0 program package [111] to
design a 2D plot (RDG vs. sign(λ2)ρ). VMD 4 [112] was used to construct
the 3D isosurface colored according to sign (λ2)ρ. This integrated
computational and visualization approach enabled a comprehensive
assessment of the NCI interactions in the system.

3. Results and discussions

The FT-IR spectra of OSI, A-ZO and A-ZO + OSI mixturewere shown
in Fig. 2.

The C–H absorption bands for bending and stretching vibrations in
the –CH3 and –CH2 groups were observed at 1371, 1373, 1410, 1449,
1465, and 2820, 2848, 2851, 2916, 2921, and 2958 cm− 1, respectively
for the A-ZO and OSI structures (Fig. 2a and 2b). The bending vibrations
of the C–H bond in aromatic hydrocarbons appear at 747, 805, and 868

cm− 1, the stretching vibration of the =C–H bond at 3049 cm− 1, and the
C=C bond stretching vibration at 1596 cm− 1. The C–O and C=O bonds
stretching vibrations for the related acid functionality in A-ZO were
observed at 1028 and 1691 cm− 1, respectively [113]. The absorption
bands observed at 427, 470, 526 and 572 cm− 1 are related to S–S and
C–S bonds. The absorption maximum at 1651 cm− 1 corresponds to the
bending vibration of the N–H bond, while the 3332 cm− 1 absorption
band shows overlapping stretching vibrations of the N–H and O–H bonds
of the acid (Fig. 2a) [114]. The absorption maxima at 1062, 1132 and
3379 cm− 1 correspond to the stretching vibrations of the C–O and H–O
bonds of the alcohol, respectively. The bending and stretching vibrations
of the N–H bonds are observed at 1675 and 3271 cm− 1(Fig. 2b). The
disappearance of the C=O band (1691 cm− 1) in the A-ZO + OSI spec-
trum (Fig. 2c) indicates interaction between the OSI amine functionality
and the A-ZO carboxyl group. Two absorption maxima at 1559 and
2682 cm− 1 are characteristic of the COO− and N-H+ groups [115,116].
The absorption maxima associated with N–H and O–H bonds in the
spectral range of 3100–3700 cm− 1 appear to overlap at 3355 cm− 1

(Fig. 2c). The nature of the contour of this absorption band indicates its
acidic character [117].

FT-IR results show that OSI has polar (NH and OH) and non-polar
sides. The polar side binds to asphaltene molecules, while the non-
polar aliphatic crown prevents aggregation through steric repulsion,
keeping asphaltenes suspended [118]. The acid group in A-ZO enhances
the effectiveness of OSI, stabilizing asphaltenes in crude oil.

In the 1H NMR (δ, ppm) spectrum of OSI shown in Fig. 3a, the signals
of hydrogen atoms are recorded at 0.78 ppm for the CH2-CH3 (3H)
group, and at 1.03 ppm for the CH-CH3 (3H) group, 1.09–1.29 ppm

Fig. 3. (continued).
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corresponds to the CH2 (10H) group in the saturated hydrocarbon tail.
1.36 ppm for the CH2-CH2-NH (2H) group, 2.32–2.60 ppm for the CH2-
NH (4H) group, and 3.69 ppm for the CH-OH (1H) group. In that
spectrum, an overlap of OH and NH signals is observed at 3.06 ppm (2H)
[94].

As shown in Fig. 3c, some signals in the 1H NMR spectrum overlap
because the A-ZO + OSI sample contains similar fragments (–CH2– and
–CH3). The CH3 group is observed at 0.75–1.09 ppm, and the CH2 group
at 1.09–1.41 ppm. The β-CH– and –CH2 groups, associated with naph-
thenic hydrocarbons and some hydroaromatic fragments of A-ZO,
appear between 1.41–1.90 ppm (Fig. 3b). The CH2-CH2-NH group from
OSI is seen at 1.30–1.46 ppm, but its signal is not clearly distinguishable
(Fig. 3c). The 2.30–2.70 ppm range corresponds to –CH3 groups bonded
to the aromatic ring in A-ZO and the CH2-NH groups of OSI. Hydrogen
atoms from > CH– and –CH2 groups attached to the aromatic nucleus are
detected between 2.70–3.42 ppm, linked to A-ZO. The OSI OH group
shows a resonance at 2.88 ppm, while the CH-OH group appears be-
tween 3.75–4.11 ppm. The proton signals in polyaromatic ring are
observed at 7.47, 8.01, and 8.44 ppm. The most notable feature in
Fig. 3c is the shift of the NH group signal to 6.16 ppm, caused by
hydrogen bonding between the NH group of OSI and the A-ZO molecule
[104,119–126].

The NOSY spectrum of the A-ZO + OSI sample (Fig. 3d) shows that
the OH group signal correlates with the NH group signal (2.88–6.16
ppm). The signals observed in the 2.30–2.70 ppm range (CH2-NH)
correspond to OSI. The hydrogen atoms of the polyaromatic nuclei
exhibit correlations both with each other (7.47–8.01 ppm) and with the
alkyl groups (8.01–1.48 ppm and 8.44–1.27 ppm). Additional correla-
tions are observed in the CH2 signal recorded at 1.27 ppm. This signal
correlates with both the alkyl fragments (1.48 and 1.59 ppm) and the
OH and NH groups, indicating interactions within the OSI and A-ZO
complex. Since both A-ZO and OSI molecules contain a saturated chain
(CH2), these signals cannot be clearly separated. In the NOESY spectrum,
the correlation between the NH signal (6.16 ppm) and aromatic hy-
drogens (8.44 ppm, strong; 8.01 ppm, weak) is noteworthy. These cor-
relations (6.16–8.44 ppm and 6.16–8.01 ppm) suggest the formation of
hydrogen bonds between the A-ZO and OSI molecules [127,128]. The
TG and DTG curves (Fig. 4a) revealed that the A-ZO molecule is ther-
mostable up to 406 ◦C. The three-stage pyrolysis process, occurring
between 406–818 ◦C, ends with the formation of 12.58 % coke. Endo-
thermic peaks are associated with degradation reactions, while
exothermic peaks correspond to internal oxidation or condensation.

Analysis of the TGA curve in Fig. 4b showed that the mass loss of OSI
starts at approximately 207 ◦C and continues until 309 ◦C. This

Fig. 3. (continued).
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endothermic process ends with the formation of 0.01 % coke, indicating
the thermostability of OSI up to 207 ◦C [129].

In Fig. 4c, the endothermic peak (297 ◦C) recorded in the tempera-
ture range 240–400 ◦C for the mixture of A-ZO and OSI was associated
with the decomposition reaction of OSI, resulting in a mass loss of 12.5
%. This mass loss corresponds to OSI being chemisorbed by A-ZO. On the
other hand, the thermal process occurring in the temperature range of
400–998 ◦C ends with the coking of A-ZO (16.77 %). The difference in
the decomposition temperature of the mixture of A-ZO and OSI from the
initial components may be due to their chemisorption. The formation of

a new bond during the adsorption of OSI on A-ZO leads to an increase in
its decomposition temperature [100,130,131].

DLS was used to study the effect of OSI on the change in aggregate
sizes in A-ZO solutions in hexane and toluene. Figs. 5a and 5b show the
changes in the distribution of A-ZO particles in solvents before and after
the addition of OSI [104,132,133].

The 583 nm peak observed in Fig. 5a (1) corresponds to large clus-
tered aggregates of A-ZO in hexane. Such aggregates precipitate rapidly
in that solvent. However, when OSI is added to the hexane solution, the
diameter of the aggregates decreases to 76 nm, and the degree of

Fig. 4. TGA and DTG mass loss curves of: A-ZO (a), OSI (b), and their mixture (c).

U.J. Yolchuyeva et al.
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dispersion increases approximately 7 times (Fig. 5a (2)).
The diameter of A-ZO (Fig. 5b (1)) particles dissolved in toluene is

17 nm (Fig. 5b). This solution has a high monodispersity. When OSI is
added to it, the monodispersity is almost unchanged, and the particle
size decreases to 13 nm.

Our identification reveals that the increase in the size of aggregates
in a hexane solution is due to the intermolecular interaction of aromatic
nuclei in A-ZO. In this solution, the interaction of A-ZO molecules with

OSI increases the polarity of the medium and causes suspension. A π-π
interaction occurs between the aromatic rings of A-ZO and the aromatic
nucleus of toluene solvent in the solution, which results in mono-
dispersity. When OSI is added to the solution, A-ZO molecules are dis-
aggregated and do not settle for a long time (approximately 10 h).

Fig. 6 depicts the suspension process that occurs after the addition of
OSI to A-ZO solution, along with the precipitation of A-ZO in hexane.

In our experiments, the approximately 90 % decrease in the average

Fig. 4. (continued).

Fig. 5. DLS curves of A-ZO (1) and A-ZO + OSI mixture (2) in hexane (a) and toluene (b) solvents.

U.J. Yolchuyeva et al.
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size of aggregates with the addition of OSI is explained by the increase in
acid-base, electrostatic, polar, and van der Waals interactions between
OSI and A-ZO molecules.

In the micrograph shown in Fig. 7a, A-ZO consists of agglomerates of
various shapes and sizes (averaging 247 and 124 µm) with a flaky, brittle
surface. Cracks are observed on the surface of A-ZO aggregates, resulting
from the separation of the resin fraction. Fig. 7b demonstrates signifi-
cant agglomerate shrinkage (to ~ 2.68 µm) in the A-ZO/OSI complex,
along with smoothing of cracks and filling of voids, consistent with DLS-
reported size reduction. These morphological changes confirm OSI’s
resin-like role in stabilizing and dispersing aggregated asphaltenes in
crude oil [101,132,134,135].

The solvent phase BSSE corrected negative binding energy (Eb =

− 28.2kcal/mol) indicates that the OSI molecules can be effective to
suppress asphaltene aggregation, which is experimentally evident. The
interaction between A-ZO and OSI was investigated in solvent phase to
simulate experimental condition better. The optimizations were started
with basic (the A-ZO carboxyl group) and acidic (the OSI carboxyl
group) functionalities in spatial proximity to ensure their interactions in
the resulting structure. The availability of carboxyl group in A-ZO and
amine group in the OSI structures may result in electrostatic interaction
between two components because of possible proton transfer from the

Fig. 6. Visual demonstration of A-ZO deposition in hexane solution (a) and its
stabilization after OSI addition (b).

Fig. 7. SEM micrographs of A-ZO (a), and A-ZO + OSI mixture (b, c).

U.J. Yolchuyeva et al.
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carboxylic part to the amine functionality. Analysis of optimized A-ZO
+ OSI complex showed that the interaction in nonpolar solvent (hexane)
is not electrostatic, rather the O–H; 1.00 Å and H-N; 1.74 Å bond dis-
tances revealed that the interactions have hydrogen-bonding nature. In a
primary acid-base interaction (primary amins, e.g., methylamine and
ethylamine and acetic acid combinations), the N-H distance was calcu-
lated to be shorter (1.54–1.61 Å) [136]. In the A-ZO + OSI system,
because of large A-ZO and OSI surfaces, non-covalent interactions (NCIs)
place the molecules in a relative position that prevents proper hydrogen
transfer and electrostatic interaction between amine and carboxylic
functional groups in the A-ZO + OSI complex. The hydrogen-bonding
character was further explored by NCI analysis. As seen in Fig. 8,
there is a small blue torus-shaped isosurface located between H—N,
which is an indication of hydrogen bonding. The corresponding
hydrogen-bonding region in the two-dimensional NCI plot can be seen as
blue dots in the region with sign(λ2)ρ values in the range of − 0.03 to
− 0.05 au (Fig. 8). van der Waals interactions [indicated by sign(λ2)ρ ≈

− 0.015 to + 0.005 au] occur between the OSI saturated tail and the A-
ZO polycyclic aromatic regions where the electron density is very low
(green isosurfaces, Fig. 8), and the RDG is high. Larger negative region
(− 0.05 au to − 0.02) represents attractive ineractions.

4. Conclusion

The aggregation process of acidic A-ZO with island structure from
crude oil was investigated using an integrative approach of FTIR, NMR,
DTA, DLS, SEM and DFT methods to study the inhibitory effect of a
newly synthesized surfactant, OSI. It was found that 12.5 % of OSI un-
dergoes chemisorption on A-ZO, which is accompanied by a decrease in
the average size of asphaltene aggregates by about 7 times. The polar
and nonpolar parts of the OSI molecule interact with the asphaltene
molecule, significantly slowing down the aggregation process and pro-
moting the formation of a stable suspension due to steric repulsion. The
presence of a carboxyl group in the A-ZO structure enhances the effi-
ciency of the basic inhibitor. Formation of strong intermolecular in-
teractions between the functional groups of the inhibitor and the active
sites of asphaltene, including acid-base (COO− and NH+), hydrogen
(bond energy of 28.2 kcal/mol) and van der Waals forces, is the main
driving force that prevents aggregation and promotes asphaltene stabi-
lization. Micrographs of the A-ZO and OSI complex demonstrate
smoothing of the porous and flaky brittle surface of asphaltene ag-
glomerates of various shapes and sizes, confirming strong interactions
between them. This interaction elucidates OSI’s resin-like functionality
as a dispersing and stabilizing agent for aggregated asphaltenes in crude

oil, demonstrating its capacity to prevent asphaltene deposition while
presenting viable applications as a novel, high-performance industrial
inhibitor.
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Fig. 8. A) Three-dimensional NCI isosurfaces of the a-zo + OSI complex, showing a small blue torus (magnified) that indicates hydrogen-bonding interaction. Green
regions represent more dispersive attractive interactions. b) RDG and sign(λ2)ρ plots for the studied system. The RDG isosurfaces were generated using a cutoff value
of RDG = 2.0, with color coding based on sign(λ2)ρ in the range − 0.05 to + 0.05 au. Blue represents strong bonding interactions, green indicates dispersive attractive
(vdW) interactions, and red corresponds to repulsive interactions (See SI, Fig. S1 for the visualized A-ZO and OSI stuructures from different prospective).
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