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Abstract

This study proposes a new queue-dependent (s, S)-type replenishment policy in
the queueing-inventory systems. If the inventory level is greater than s, no restock-
ing order is sent; otherwise, the replenishment is performed to reach the maximum
value S, regardless of the stock level at the moment. Orders are replenished in two
ways: the regular order and the urgent order. Lead times of the two-type orders are
exponentially distributed with different parameters. The urgent orders require a
shorter delivery time than the regular orders. The queue-dependent replenishment
policy is defined as follows: when the inventory level drops to s, if the number of
the customers is less than predefined threshold value r, the regular order is made;
if the number is more or equal r, the urgent order is sent. When the inventory level
drops to zero, one customer becomes impatient, regardless of the customer’s number
in the queue. Arrival of customers is according to a Markovian arrival process and
the service times are adapted by a phase-type distribution. The mathematical model
of the system is developed using a continuous-time Markov chain with an infinite
state space. Stability condition and then the steady-state distribution are derived by
using the matrix-geometric method. The influences of the parameters on the perfor-
mance measures are discussed with numerical examples. An optimization problem
is solved, where the criterion is the expected total cost, and the controlled param-
eters are the reorder point s and the threshold parameter r.
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1 Introduction

In classical inventory management systems, in-demand items are released directly
from the warehouse in accordance with the self-service rule, i.e. in the systems,
the time required to serve the customer is zero. So, when the inventory level is
zero, customers’ arrival causes a result in lost sales or they are served after the
replenishment of items. However, a positive time is needed for some necessary
procedures to delivery of items in the inventory. The systems in which the ser-
vice time is positive called queueing-inventory systems (QIS). The first studies
in QISs models are Melikov and Molchanov (1992) and Sigman and Simchi-Levi
(1992). A detailed survey for the literature of QISs can be examined in Bijvank
et al. (2011), Krishnamoorthy et al. (2011, 2021) and Salini et al. (2023).

A distinction should be made between two parts of a traditional QISs: the ser-
vice facility and the warehouse facility. The service facility contains the server
and the buffer for waiting customers, including the service mechanism and sale
schemas; the warehouse facility contains the stock for storing inventory items,
including the external source(s) and the adopted replenishment policy. According
to this framework, there are two types of metrics for assessing the performance of
real-world QISs.

Quality of Service (QoS) is a key customer-related factor that directly affects
customer satisfaction. QoS metrics (or indicators) are defined using some per-
formance measures, such as loss rate (or loss probability), average queue time
(sojourn time), average queue length, server load, etc. Another important issue in
QIS is inventory-related factor which is determined by average inventory level,
replenishment rate, reorder cycles, average order size, etc. Key issue in the study
of QISs models is to balance between customer-related and inventory-related
metrics to minimize the system’s Expected Total Cost (ETC). In general, this
goal can be achieved by using an effective management strategy, typically imple-
mented by (1) using an optimal admission control scheme and (2) implementing
an optimal replenishment policy (RP). These approaches are more realistic for
achieving the stated goal, since in practice the process of the customer arrival,
their service time, warehouse capacity, order fulfillment times, etc. are often not
subject to control. In other words, usually only by choosing the either appropriate
admission control scheme or replenishment policy it is possible manage ETC and
achieve the desired level of performance measures.

Recent papers (Chakravarthy and Melikov 2024; Melikov et al. 2018, 2019;
Otten and Daduna 2022; Rasmi et al. 2021; Shajin et al. 2020; Sugapriya et al.
2022, 2023; Varghese and Shajin 2018) have considered QIS models with opti-
mal admission control scheme. In Chakravarthy and Melikov (2024) the reader
can find a detailed overview of the works in the first direction. In this study, we
focus on the second direction to develop an effective management strategy. There
is a significant gap in the study of the concept of optimal RP in QISs. Although
previous studies have analyzed some aspects of this problem for single-source
QIS. In known studies, the problem of finding the optimal RP is simple reduced
to the problem of finding the optimal reorder point when using well-known (s, )
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and (s, Q), O = S — s, policies, where S denotes the maximum size of the system’s
warehouse and s is reorder point; s < (§/2) for (s, S) policy and s < § for (s, Q)
policy.

Note that finding the optimal RP based on both the current queue length and
the inventory level has not been well studied, although the relevance of this
problem is beyond doubt. We call this type of RP as state-dependent (or queue-
dependent) policy. From a scientific point of view, the study of QISs models with
state-dependent RPs will enrich the theory of operations research. From a practi-
cal point of view, studying the QIS models with state-dependent RPs will allow
the system manager to make effective decisions during operational management.
Indeed, in case of using state-independent RP, excess stock that have no buyers
may arise, which means that the system will waste useless economic costs on
storing stock; and vice versa, in this case there may be frequent loss of custom-
ers due to lack of stock. In other words, to improve the efficiency of QIS, state-
dependent RPs must be applied when ordering inventory.

Let us review the available papers in which single-source QISs models with
state-dependent RPs are considered. Melikov and Molchanov (1992) was among
the early pioneers to introduce the notion of state-dependent RP within QISs
and examined the following model. Threshold s, 0 < s < § — 1, where S denotes
the maximum capacity of a warehouse, is defined and if the inventory level is
greater than s, then no restocking order is sent; otherwise, the queue-dependent
randomized replenishment policy is determined as follows: the system orders an
inventory of size m, 1 < m < § — s, with probability (w.p.) @,,(n), where n is the
number of customers in queue, 0 < n < N, N denotes the maximum queue capac-
ity. It is assumed that Zi:l a,,(n) = 1 for each n. The authors uses Markov Deci-
sion Process (MDP) approach to minimizing the total cost associated with the
waiting times and the loss of customers and the holding of stock in the ware-
house. The problem is solved by selecting optimal values of the probabilities
a,(n), 1 <m<S—s, 0<n<N. Itis shown that the optimal RP is in the class
of nonrandomized (deterministic) policies, i.e. for each n there exist only one
mé€ {1,...,5 — s} such that a,,(n) = 1, see (Mine and Osaki 1970). In other words,
as a result of solving the optimization problem, the optimal size of the order is
determined depending on the number of customers in the queue. An approxi-
mate method to solving the large scale MDP problem is developed as well. A
generalization of this model to the case where the size of items requested by the
customers is a random variable was examined in Melikov and Fatalieva (1998).
Models of QISs with state-dependent RPs in case infinity warehouse capacity (i.e.
when § = o0) has been considered in Berman and Kim (1999); Berman and Sapna
(2000); He and Jewkes (2000); He et al. (2002a, 2002b) and Kim (2005). In Kim
(2005) a QIS model with a finite buffer for waiting of customers is considered.
The order size is constant and at each decision point the proposed RP must deter-
mine: Do Not Order and Order. Finding the optimal replenishment policy is a
continuous-time MDP, but using the well-known uniformization procedure it is
formulated as a discrete-time discounted MDP. The authors show that the optimal
RP has a monotone threshold form and develop a procedure that allows finding
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the optimal values of the buffer size and order quantity. Similar model with infi-
nite queue was studied in He and Jewkes (2000). Models with zero lead time in
the case of a finite queue were studied in Berman and Kim (1999) and Berman
and Sapna (2000); similar models in the case of an infinite queue were studied in
He et al. (2002a) and He et al. (2002b). These papers also use the MDP approach.

Strategies for timely inventory replenishment and for providing the high levels
of QoS often require the use of multiple suppliers (or multi-sources). The focus of
this study is on understudied multi-sources QISs with finite warehouse capacity (i.e.
when S < o0). A literature review of multiple-supplier classical models of inven-
tory management systems (without service stations) and their applications to sup-
ply chain management issues is provided by Minner (2003). Based on this review,
we conclude that multi-sourcing was prevalent in most business areas during those
years and there is every reason to believe that this trend will continue in the future.
First of all, having multiple sources allows managers to eliminate the risk of depend-
ence on a single source. Secondly, having multiple suppliers allows managers to
minimize the risk of price increases at some sources for various reasons, supply dis-
ruptions due to technical disasters, political instability in the region, capacity limita-
tions, fluctuations in lead times, etc.

Unlike classical multi-sources inventory management systems, the models of
multi-sources queuing-inventory systems are poorly examined. Recently the models
of double-sources QISs are proposed by Melikov et al. (2022a, 2022b) and Melikov
et al. (2023). In Melikov et al. (2022a) two separate models of QIS with infinite
queues under (s, S) and (s, Q), Q = S — s, policies are studied. Inventories can be
replenished from two sources with different lead times and inventory delivery costs.
If the inventory level drops to the ordering point s, then a regular inventory order is
generated to the slow source; if inventory levels fall below a certain threshold value
r, where r < s, then the system instantly cancels the regular order and an emer-
gency order to the fast source is generated. In Melikov et al. (2022b) a hybrid RP in
double-sources QIS is defined as follows: if the inventory level drops to the reorder
point s, then a regular order of the fixed volume Q = § — s is generated (i.e. (s, Q)-
policy is used) to a slow and cheap source; if the inventory level falls below a certain
threshold value r, where r < s, then the system instantly cancels the regular order
and generates an emergency order to a fast and expensive source where the replen-
ishment quantity should be able to bring the inventory level back to S at the replen-
ishment epoch (i.e. (s, S) policy is used). For all QISs in Melikov et al. (2022a) and
Melikov et al. (2022b) the ergodicity conditions are found, their stationary distribu-
tions are calculated, and formulas are proposed for finding their performance meas-
ures. In addition, the problems of minimizing the total cost of the studied systems
are solved by choosing the appropriate values of the ordering point s and threshold
value » when using different RPs. In Melikov et al. (2023) similar models with a
finite waiting room are investigated.

To our best knowledge, the finding of state-dependent optimal RP in multi-source
QIS has been unexplored in the available literature. In this study, we propose a new
state-dependent RP in double-source QIS that offering a framework for more effi-
cient inventory management strategies in a real-world situation. The proposed RP
is aimed at increasing the replenishment rate through a fast source when the queue
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length exceeds a given threshold value. Note that speeding up of inventory items
may reduce costs associated with lost sales and customers waiting in queue but it
can also increase inventory-holding costs and ordering costs, i.e. inventory manage-
ment problem becomes more complicating, see (Baek 2024; Jose and Nair 2017)
and Rejitha and Jose (2017). This paper explores the cost optimization problem as
well.

Our goal is developing the simple, implementable, and yet optimal RP in multi-
source QIS. Once the appropriate RP has been developed, the next step is to select
the efficient mathematical tool to calculate the performance measures of the QIS
under the proposed RP. Here we use the Neuts’s matrix-analytic method (MAM)
(Neuts 1981). The theory and practice of MAM, as well as the current state of this
theory, can be found in the monographs (Dudin et al. 2020; He 2014; Latouche and
Ramaswami 1999) and the two-volume monograph (Chakravarthy 2022a, b).

The essential contributions of our paper are as follows:

e A novel RP in an infinite QIS that based on the switching the order replenish-
ment from a slow rate to a fast rate one depending on the current number in the
queue is proposed.

e We consider a model with a Markov arrival process (MAP), a phase-type dis-
tributed service time and an exponential order replenishment time with different
rates for different types of orders.

e Mathematical model of the investigated QIS is formulated as a multi-dimen-
sional Markov chain; a stability condition is obtained and the system’s steady-
state probabilities and some measures related to system’s performance are
obtained.

e To be specific, the proposed RP is described based on (s, S) policy while the
developed approach can be easily applied for other RPs as well.

e How the performance measures behave as changed the parameters of the system
is demonstrated, and the results of the problem of minimizing the total costs are
discussed.

e The analysis of the state-independent queueing-inventory model is presented as
a special case of the proposed model. The differences between the two systems,
the state-independent RP and the state-dependent RP, are shown by numerical
comparisons in terms of both performance measures and cost optimization.

It is clear that, considering the above listed peculiarities will increase the utility of
the model in practice. It is important to note that the approach proposed here can
also be applied to finding supply modes in single-source inventory systems with dif-
ferent replenishment capabilities: short lead times but high replenishment costs and
long lead times but low replenishment costs. Regular orders can be processed using
low-speed transport (e.g. ocean freight), while urgent orders can be processed using
high-speed transport (e.g. air freight). In other words, another area of application
of the proposed approach is the choice of the supply mode in single-source QISs
depending on the current queue length.

The paper is structured as follows. A detailed model description is given in
Sect. 2, and model analysis is done in Sect. 3. Various system performance measures
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are defined and calculated in Sect. 4. In Sect. 5 the analysis of the state-independent
queueing model is presented as a special case of the studied model. Sect. 6 analy-
ses the results of numerical experiments to study behavior of performance meas-
ures versus defined thresholds as well as optimization of performance measures. The
conclusions are given in the Sect. 7.

2 Model description

We discuss a queueing-inventory system with queue-dependent replenishment pol-
icy as demonstrated in Fig. 1.

¢ In the queueing-inventory system, customers arrive to the system occurs accord-
ing to a MAP with parameters (D, D,),, , where m, is the number of phases, the
matrix D, denotes the transition rates without arrival and the matrix D, repre-
sents the transition rates with arrival. The Markov chain of the MAP is man-
aged by the matrix D = D + D,. So, the arrival rate is represented by 1 = éD e
where 6 is the stationary probability vector of the matrix D. The vector satisfies
6D = 0 and de = 1.

e Once the customers arrive to the system wait in a single line (if the server is
busy) and are served in the order of their arrivals. When the inventory level
drops to zero, the waiting customers in the queue become impatient. We consider
a constant impatient rate. That is, when the inventory level drops to zero, only
one customer in the queue becomes impatient independently of the number of
customers in the queue and the impatience rate is equal to 7.

e The service times follow a phase-type distribution with parameters (8,7) of
dimension m,. For later use, the service rate is denoted by u = [B(—T) 'e]~! and
T is the column vector satisfying Te + T° = 0.

e We assume that an external supplier has different vehicles for the delivery in the
system. In other words, orders can be replenished in two ways: the regular (slow)
order and the urgent (fast) order. Lead times of the two-type orders differ from
each other; i.e., if the regular order is made, then the mean lead time is vl if

1

the urgent order is made, then the mean lead time is v; . Note that v;! < vi''. In

other words, the urgent order requires a shorter delivery time than the regular

order
Inventory: (s, S)-polic Supplier
When there are no inventory, G
departure of customer with rate exp(t) Regular replenishment with exp(v,) forn < r
Urgent replenishment with exp(v,) forn >r
MAP(Do, Dy)m, Queue Service process:
Arrival of customer (Infinite capacity) PH(B,T) of order m, Served customer
departs.

Fig. 1 The queueing-inventory with queue-dependent replenishment policy
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order. So, the supplies via an urgent order are more expensive, expectedly. The
lead times follow an exponential distribution.

e The queue-dependent replenishment policy with different lead times based on
"Up to S" scheme (or (s, S)-policy) is studied. The ordering point s, 0 < s < S, is
defined as follows. It means that if the inventory level is greater than s, then no
restocking order is sent; otherwise, the replenishment will bring the inventory to
its fullest, i.e., when the replenishment occurs the inventory level will increase to
S no matter what the inventory level at the moment.

o We define the threshold value r, r > 0, for the number of the customers in the
system. So, the queue-dependent replenishment policy is defined as follows: if
the inventory level drops to s and the number of the customers in the system is
less than r, then the regular order is made; when the inventory level drops to s
and the number of the customers in the system is more or equal r, then the regu-
lar order is instantly canceled and the urgent order is sent.

3 Steady-state analysis

We investigate the steady-state analysis of the queueing-inventory system. The pro-
cess {(N(),I(1),J(1), K(1)),t > 0} is a continuous-time Markov chain (CTMC). That
is, at time ¢, N(¢) is the number of customers in the system; /() is the inventory level
in the system; J(¢) is the phase of the service process; and K(¥) is the phase of the
arrival process. The state space of the system is given by

Q={0,ik):0<i<S k=1,....,m}|
{(nijk):n>0,0<i<S, j=1,....my k=1,...,m}.

The level {(0,i,k) : 0<i < S, k= 1,..,m;} with dimension m,(S + 1) conforms to
the case when there are no customers in the system, the inventory level is i, and the
arrival process is in one of m, phases. The level {(n,i,j,k) : n >0, 0<i< S, j=1,
ww iy, k=1,.,m;} with dimension m;m,(S + 1) conforms to the case when there
are n customers in the system, the inventory level is i, the service process and the
arrival process are in one of m, phases and in one of m, phases, respectively.

The generator matrix of the system in OBD structure is given by

BO AO
C, B, A
C B A
CB A

The matrices A, and A have dimensions m(S+1)Xxm;m,(S+1) and
mmy(S + 1) X mym,(S + 1), respectively.

@ Springer



90 Page 8 of 36 A. Melikov, S. Ozkar

B®D, I®D,
ﬁ®Dl A=

B®D, I1®D,

Ay = reDb, .

The matrices C, and C have dimensions mm,(S+1)Xm(S+1) and
mmy(S + 1) X mym,(S + 1), respectively.

ol
(e® =) T'BeD 0

c,=|T'®D 0 , C= T RI) 0

' 0"' .

The matrices B, and B;, [ =1,2, have dimensions m(S+ 1) X m;(S+ 1) and
m;m,(S + 1) X mym,(S + 1), respectively.

D, —vI viI
D,—-vI vl
B, = Dy, —vI vl |,
D,

D,

IQDy) —(r+vI 74

T eDy)—vil vl

B, = (T®Dy) —vlI vl

(T ®D,)
(T ®D,)

3.1 Stability condition

We give the invariant vector of the generator matrix F' = A + B, + C by the vector
= (mwy, wy, ", W, Ty, , Tg). Bach vector part x; of dimension mn corresponds
that the inventory level is i, the service process is in one of the n phases, and the
arrival process is in one of the m phases. So, the vector & satisfies

aF =0 and me = 1. 2)
Theorem 1 The queueing-inventory system under study is stable if and only if the

following condition is satisfied

A< u(l —mye) + tmpe. 3)
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Proof The system under study is a QBD process. Therefore, it is stable if and only if
mAe < mCe (See in Neuts 1981). That is,

N

S
Y xd,, ®Dpe < tmpe+ ) a(T°BRI, e. 4)

i=0 i=1

Firstly, we rewrite the steady-state equations in (2) as follows.

I ®D) + T QDy) — vl + x (T°BRI) =0,
7T ®D)) + (T ®Dy) — oIl + 7, (T°BRI) =0, 1 <i<s,

7lI®D)+ (T ®DY) + 7, (T°FRD =0, s+1<i<S—1, ®)
[my+ - +x]Jv,l +x,[I QD))+ (T &Dy] =0,
with the normalizing condition
s
Y me=1. (6)
i=0
By adding the equations in (5), the following equation is achieved
s
o, ®D)+ Y (T +T°p) @ D] =0. )

i=1
Post-multiplying the equation (7) by (e,, ®1,, ) and using the rate 1 = 6D e, and
then by the condition in (6), we get the left side of the inequality in (4) as follows.

N N

Z n',-(em2 ®D13m1) =1 Z me = A

i=0 i=0
Post-multiplying the equation (7) by (Z,,, ® e, ) and using the rate y = 1/ [B(=T)'e]
and the condition in (6), we get

S s
Y w(T°B®L, )e=p ) me=pu(l - mpe).
i=1 i=1
This result gives the right-side of the inequality in (4) as u(1 — mye) + tmye . In this
way, the proof for Theorem 1 is completed. O

Note 1. The established stability condition in (3) has a probabilistic meaning. The
condition denotes that the arrival rate of customers to the system must be less than the
total rate of impatient rate (leaving the system because of no inventory) and the service
rate of customers.
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3.2 The steady-state probability vector

We give the steady-state probability vector for the generator matrix Q in (1) by
x = (Xy, X;,+, X.,X,,1, ). So, the vector x satisfies the following equations.

x0=0and xe=1. (8)

The vector x, with dimension m,(S+ 1) is partitioned into the vectors as
xo = [%¢(0), xy(1), -+ , x4(S)]. In here, the dimension of each vector is m,. The vector
x, (i) denotes the probability that there are no customers in the system, the inventory
level isi, 0 < i < S, and the arrival process is in one of the m, phases.

m;m,(S + 1) dimensional vector x,, n > 1, is also partitioned into the vectors
as x, = [x,(0),x,(1), -+, x,(S)]. The dimension of each vector is m,;m,. The vector
x,,(i) represents the probability that there are n customers in the system, the inven-
tory level is i, 0 < i < S, the service process is in one of the m, phases and the
arrival process is in one of the m, phases.

To obtain the steady-state probability vector x, we use the following Theo-
rem 2 as a solution to the equations in (8). The theorem is a direct consequence of
Neuts’ result on QBD processes (see, Neuts 1981).

Theorem 2 Under the stability condition in Theorem 1 the steady-state probability
vector x is achieved by solving the following system of linear equations

xoBy +x,C, =0, 9)
XAy +x,B, +x,C =0, (10)
x,_A+x,B, +x,,C=0, 2<n<r-2 (11)
x,_,A+x,_[B, +RC] =0, (12)

r—2
xpe+ Y x,e+x,_I-R)'e=1. (13)

n=1

where the matrix R is the minimal nonnegative solution to the following matrix
quadratic equation

R’C+RB,+A =0. (14)

The QBD structure of the generator matrix in (1) yields a modified matrix-geometric
solution. So, the non-boundary states (n > r) are given by

=x,_ R™', n>0. (15)

xn+l
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4 Performance measures

Performance measures related to the queueing-inventory system with queue-
dependent replenishment policy are listed.

1. Measures related to customer
The average number of customers in the system:

e r—1
= Z nx.e= Z nx,e+x,_[rRI-R)™" +R*I -R)|e. (16)
n=1 n=1

The probability of customers leaving the system when there is no inventory:

Plost = an(o)em,mz' (17)
n=1

2. Measures related to inventory
The average number of items in the inventory

S
Z ixo(i)e,, + Z Z 1%,(0)€, . (18)

n=1 i=

The average volume of deliveries via the regular order

N r—-1 S
V.= ; ix)(S = ey, + Zf ; 13,(S = ey, (19)

The average volume of deliveries via the urgent order

&) N
Z Z ix,(S = i)e, .. (20)

3. Measures related to replenishment
The average intensity of regular orders

r—1

RR, =Y x,(s+ )T’ ®1,)e,, . 1)
k=1
The average intensity of urgent orders
RR, = an(s + DI ®1, e, - (22)
k=r
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5 State-independent case of the studied queueing-inventory model

In this section, the queue-independent replenishment policy is considered for the stud-
ied queueing-inventory model. So, we ignore the threshold value r defined for the num-
ber of the customers in the system. Regardless of the number of the customers in the
system, an order is placed when the inventory number drops to s. The lead times follow
an exponential distribution with parameter v. In other words, the replenishment rates
of the regular orders and the urgent orders, previously considered as v, and v,, respec-
tively, are assumed to be equal in this model (v = v; = v,). The urgent order situation,
which is given depending on the threshold value 7, is ignored. Except for the replen-
ishment policy, all assumptions of the model defined in Sect. 2 are valid for the state-
independent queueing-inventory model studied here.

Due to the replenishment rate, only the matrices in the main diagonal of the genera-
tor matrix Q in (1) change while the other matrices remain the same. The new generat-
ing matrix is given follows.

Ky Ay
C, K A
0, = 0 C K A ) (23)
with
D, - vl vl
D, —vI vl
K() = DO - VI V‘I N
DO
DO
IQ®Dy)—(t+wI vl
(T®Dy) —vI vI
K= (T ®D,) —vI Y
(T ®D,)
(T ®Dy)
We give the invariant vector of the matrix F; =A+K+C by the vector
= (&g, Ry, R, ypy,+, Bg). The vector 7 satisfies
aF, =0 and 7te = 1. (24)

The stability condition of the state-independent queueing-inventory model is given
in the following Theorem 3. We note that the stability condition in (25) is similar to
one in Theorem 1 (consider the vector 7, instead of xy).
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Theorem 3 The queueing-inventory system with state independent is stable if and
only if the following condition is satisfied

A< u(l —mye) + trge. (25)

Proof The state-independent queueing-inventory system in this section is also a
OBD process. So, the system is stable if and only if #Ae < wCe (See in Neuts 1981).
That is,

S N
Y i, ®D)e < tge+ Y A (T°B®I,, e. (26)
i=0

i=1
Firstly, we rewrite the steady-state equations in (24) as follows.

I ®D)+TQDy) —vIl+# (T°ARI) =0,
#lA®D)+(T ®Dy) —vIl+ 7, (T° LR =0, 1 <i<s,
#lI QD) +(T®DY]+#,, (TR =0, s+1<i<S—1,
(&g + - + &I + &[T @ D)) + (T ®Dy)] =0,
S

with the normalizing condition Z e =1.

i=0
27)
By adding the equations in (27), we obtain the following equation.
s
ityd,, ®D)+ Y #,[(T+T°p) @ D] =0. (28)

=1

The equation in (28) is multiplied by (e,,, ® I,, ) and then we get the left side of the
inequality in (26) by using the arrival rate 4 = 8D, e and the normalizing condition
in (27) as follows.

s
#(e, ®De, ) =4 Z #ie = A
i=0

M-

Il
=}

After the equation in (28) is multiplied by (Z,,, ® e,, ), we obtain the following result
by using the service rate u = 1/[B(—T)"'e] and the normalizing condition in (27).

M-

N
#(TB®I,, )e=p Y, #e=u(l - ige).
i=1

i=1

The result gives the right-side of the inequality in (26) as u(1 — mye) + 7mye . So,
the proof for Theorem 3 is completed. O

We give the steady-state probability vector for the generator matrix in (23) by
Yy = g, ¥1-¥2, ++)- So, the vector y satisfies the following equations.

y0,=0and ye=1. (29)
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The following Theorem 4 is used to obtain the steady-state probability vector y.
The theorem is a direct consequence of Neuts’ result on OBD processes (see, Neuts
1981).

Theorem 4 Under the stability condition in Theorem 3 the steady-state probability
vector y is achieved by solving the following system of linear equations

YoKo+y,C, =0, (30)
YoAo +y[K+R,C] =0, 3D
yoe +y I —R)'e=1. (32)

where the matrix R, is the minimal nonnegative solution to the following matrix
quadratic equation

RIC+RK+A=0. (33)
The states (n > 2) are given by
Yo =yiR n>2. (34)

Note 2. Due to the structures of the generator matrices, the geometric struc-
ture going to infinity (the solution for the non-boundary states) is captured in
the state-dependent model at the case n > r in (15) while it is captured in the
state-independent model at the case n > 2 in (34). So, at state-dependent model
in Sect. 3, the structure of the generator matrix @ in (1) yields modified matrix-
geometric solution as given Theorem 2. On the other hand, at state-independent
model in this section, the structure of the generator matrix Q, in (23) yields origi-
nal matrix-geometric solution as given Theorem 4.

Finally, performance measures related to the queueing-inventory system with
queue-independent replenishment policy are listed.

1. Measures related to customer
The average number of customers in the system:

[s)

L,=Y nye=yd-R)7e. (35)
n=1
The probability of customers leaving the system when there is no inventory:
plosl = Zyn(o)emlmz' (36)

n=1
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2. Measures related to inventory
The average number of items in the inventory

S o S
?m, = Z iyo(De,, + Z Z 1Y, (D)€ m, - (37)
1

i= n=1 i=1

The average volume of deliveries

S [+ S
V= ; i Yo(S = ie,, + 2_‘1 ; i Yu(S = D)ey .- (38)

3. Measures related to replenishment
The average intensity of orders

Re= Yy, s+ DT ®1L, e, (39)
k=1

6 Numerical illustration

The behavior of the some performance measures and optimum inventory policy
under various arrival processes and service time distributions are discussed.

For the arrival process of the system, the following values of the matrices D,
and D, are considered. All processes has the same mean of 1. However, each of
them is qualitatively different. Namely, the values of the standard deviation for
the inter-arrival times of ER-A, EX-A, HE-A NC-A and PC-A are, respectively, 1,
1.41421, 3.17451, 1.99336, and 1.99336. We note that the values of the standard
deviation are given according to ER-A. The MAP processes are normalized to
have a specific arrival rate 4. For two sequential inter-arrival times, the process
NC-A has a negative correlation with a value of —0.4889 and the process PC-A
has a positive correlation with a value of 0.4889. There are no correlation in the
other arrival processes.

Table 1 The values of the system parameters

As It Is Varied It Is Fixed

The arrival rate: A r=4,pu=4,v,=1Lv,=251=5
The service rate: u r=4,A=16,vi=1v,=25,7=5
The impatient rate: = r=4,A=38u=4,v,=1v, =25
The threshold point to switch order mode: r A=38u=4,v,=1,v,=257=5
The replenishment rate for regular order: v, r=4,A=38u=4,v,=3,7=5
The replenishment rate for urgent order: v, r=4,A=38u=4,v,=17=5
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Fig.2 P, vs A, u, 7 for ER-S (left side) and HE-S (right side)

Erlang distribution (ER-A): D, = < _02 _22 >’ D, = ((2) 8)

Exponential distribution (EX-A): D, = ( -1 ), D, = ( 1 )
Hyperexponential distribution (HE-A):

-19 0 171 0.19
DO‘( 0 —0.19)’ b= <o.171 0.019>'

MAP with negative correlation (NC-A):

—1.00222 1.00222 0 0 0 O
D, = 0 —1.00222 0 , D, =] 0.01002 0 0.9922 |.
0 0 —225.75 223.4925 0 2.2575
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Fig.3 P, vsr,v,,v, for ER-S (left side) and HE-S (right side)

MAP with positive correlation (PC-A):

—1.00222 1.00222 0 0 O 0
D, = 0 —1.00222 0 , D, =]0.9922 0 0.01002
0 0 —225.75 2.2575 0 223.4925

For the service times, the phase-type distributions with parameter (f, T) are con-
sidered. Each of the distributions has the same mean of 1, but qualitatively differ-
ent. The values of the standard deviation of ER-S, EX-S and HE-S are, respectively,
0.70711, 1 and 2.24472. The distributions are normalized at a specific value for the
service rate .

Erlang distribution (ER-S): g = ( 1,0 ), T = _02 _22
Exponential distribution (EX-S): f = ( 1 ), T = ( -1 )

e -19 0
Hyperexponential distribution (HE-S): B = (0.9, 0.1), T = < 0 —0.19 )
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Fig.4 In(L,,) vs A, u, 7 for ER-S (left side) and HE-S (right side)

6.1 The effect of parameters on performance measures

We investigate how the performance measures in (16)-(22) behave under various the
arrival processes and service time distributions. For this purpose, the reorder point
and the maximum inventory level are fixed by s = 3 and S = 7, respectively. The val-
ues of the other system parameters are varied as given in Table 1.

In the considered model growing the rate of customers (4) leads to increasing
the P, in case HE-S distribution for all arrival processes (see right side of Fig. 2).
However, this phenomenon is not observed for ER-S distribution (see left side of
Fig. 2), i.e. except PC-A arrival process, P, increases until the rate of custom-
ers reaches a certain value, after which it begins to decrease. Such behavior can be
explained as follows: with increasing the rate of customers, the length of the queue
reaches a threshold value and therefore the urgent replenishment will switch on,
and thereby the level of inventory of the system increases, i.e. the P, is decreased.
Growing the service rate of customers (u) leads to increasing the P, in case ER-S
for all arrival processes except ER-A (see left side of Fig. 2), i.e. for the ER-A pro-
cess this measure increases at low values of the service rate, and after a certain value
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Fig.5 In(L,,) vsr,v,, v, for ER-S (left side) and HE-S (right side)

of the service rate it begins to decrease. Such behavior of P, is unexpected. Similar
behavior is observed in case HE-S for ER-A, EX-A and NC-A processes (see left
side of Fig. 2). Growing the impatience rate of customers (z) leads to decreasing the
P,,,, in case HE-S distribution for all arrival processes (see right side of Fig. 2). It
was expected behavior of P, since leaving the queue of customers without items
do not reduce the inventory level. In case ER-S distribution for PC-A, NC-A and
EX-A arrival processes (see left side of Fig. 2), P, is increased at low values of the
impatience rate, and after a certain value of the impatience rate it begins to decrease.
Note that the values of P, are essentially high in case HE-S distribution.

Growing the threshold for switching urgent replenishment (7) leads to increasing
the P, in both cases of HE-S and ER-S distributions for all arrival processes (see
Fig. 3). The values of P,,, for various service distributions essentially differ each
other. Growing the both rates of regular and urgent replenishment rates (v, v,) leads
to decreasing the P, in both HE-S and ER-S distributions for all arrival processes
(see Fig. 3). The values of P,,, for various service distributions essentially differ
each other.
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Fig.6 1, vs A, u, 7 for ER-S (left side) and HE-S (right side)

The average number of customers in the system (L,,) is increasing function ver-
sus the rate of customers in both cases HE-S and ER-S distributions for all arrival
processes; at the same time, this measure is decreasing function versus both ser-
vice and impatience rates (see Fig. 4). Such behavior of this measure is expected.
The average number of customers in the system (L,,) is almost constant versus the
threshold for switching urgent replenishment and the rate of regular replenishment;
however, it is slightly increased versus the rate of urgent replenishment (see Fig. 5).

At low values of the arrival rate of customers the average inventory level (Z,,)
is decreasing function and after its a certain value it begins to increase in both
cases HE-S and ER-S distributions for all arrival processes (see Fig. 6). Such
behavior of this measure was expected: with increasing the rate of customers, the
length of the queue reaches a threshold value (r) to switch urgent replenishment,
and thereby the level of inventory of the system increases. As it was expected,
this measure is decreasing function versus both service and impatience rates (see
Fig. 6). The average inventory level (I,,) is decreasing function versus the thresh-
old for switching urgent replenishment in both cases HE-S and ER-S distributions
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Fig.7 I, vsr,v;,v, for ER-S (left side) and HE-S (right side)

for all arrival processes; at the same time, it is increasing function versus both
rates of regular and urgent replenishments (see Fig. 7).

At low values of the arrival rate of customers the average volume of deliv-
ers via regular order (V,) is increasing function and after its a certain value it
begins to decrease in both cases HE-S and ER-S distributions for all arrival pro-
cesses (see Fig. 8). Such behavior of this measure is explained as follows: with
increasing the rate of customers, the length of the queue reaches a threshold
value (r) to switch urgent replenishment (i.e. at this point regular order canceled),
and thereby the average volume of delivers via regular order decreases. As it
was expected, this measure is increasing function versus both service and impa-
tience rates (see Fig. 8). The average volume of delivers via regular order (V,) is
increasing function versus parameter r in both cases HE-S and ER-S distributions
for all arrival processes; this measure is decreasing function versus both service
and impatience rates (see Fig. 9). Note that values of this measure in case ER-S
distribution for ER-A, EX-A and NC-A arrivals are essentially high than in case
HE-S distribution.
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Fig.8 V,vs 4, u, v for ER-S (left side) and HE-S (right side)

The average volume of delivers via urgent order (V,) is increasing function
versus arrival rate of customers while it is decreasing function versus both ser-
vice and impatient rates in both cases HE-S and ER-S distributions for all arrival
processes (see Fig. 10). As it was expected, this measure is decreasing function
versus parameter r in both cases HE-S and ER-S distributions for all considered
arrival processes; it is almost constant versus rate of regular replenishments while
it is decreasing function versus rate of urgent replenishments (see Fig. 11).

The average intensity of regular orders (RR,) is increasing function versus
arrival rate of customers for their low values and after its a certain value it begins
to decrease in both cases HE-S and ER-S distributions for all arrival processes
types (see Fig. 12). Such behavior of this measure is explained as follows: with
increasing the rate of customers, the length of the queue reaches a threshold value
(r) to switch urgent replenishment (i.e. at this point regular order canceled), and
thereby the average intensity of regular orders decreases. As it was expected,
this measure is increasing function versus both service and impatience rates
(see Fig. 12). As it was expected, the average intensity of regular orders (RR,) is
increasing function versus parameter r in both cases HE-S and ER-S distributions
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Fig.9 V,vsr, v, v, for ER-S (left side) and HE-S (right side)

for all arrival processes; this measure is almost linearly increasing function ver-
sus rate of regular replenishments while it is linearly decreasing function ver-
sus rate of urgent replenishments. Note that values of this measure in case ER-S
distribution for ER-A, EX-A and NC-A arrivals are essentially high than in case
HE-S distribution (see Fig. 13).

The average intensity of urgent orders (RR,) is increasing function versus arrival
rate of customers in both cases HE-S and ER-S distributions for all arrival pro-
cesses; this measure is decreasing function versus both service and impatience rates
because that with increasing these parameters chances of reaching value of length
of queue to threshold (r) is decreased (see Fig. 14). The average intensity of urgent
orders (RR,) is decreasing function versus parameter r in both cases HE-S and ER-S
distributions for all arrival processes; this measure is almost constant versus rate of
regular replenishments while it is linearly increasing function versus rate of urgent
replenishments (see Fig. 15).
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Fig.10 V, vs 4, u, 7 for ER-S (left side) and HE-S (right side)

6.2 Comparison of two systems: state dependent and state independent

In this section, we compare the queueing-inventory model with state-dependent
replenishment policy described in Sect. 2 with the queueing-inventory model with
state-independent replenishment policy in Sect. 5 in terms of some performance
measures.

Tables 3 and 4 show the results for both systems. That is, the columns with S-D
include the results for the system with the state-dependent replenishment policy
and the columns with S-I include the results for the system with the state-inde-
pendent replenishment policy. In order to compare the two systems, all parameter
values except the replenishment rate are taken as the same for both systems. The
values of the parameters are varied for the system with S-D as given in Table 1
and for the system with S-I as given in Table 2. In other words, in the system with
S-D, the regular replenishment rate is fixed with v; = 1 and the urgent replenish-
ment rate is fixed with v, = 2.5 depending on the thereshold value r, while in the
system with S-1, since the urgent order is ignored, there is a single replenishment
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rate and it is fixed with v = 1. The reorder point and the maximum inventory level
are fixed by s = 3 and § = 7, respectively, for the both sysyems.

First of all, we would like to note that. In order to compare the two systems,
we considered a single average volume of deliveries via order by adding the aver-
age volume calculated separately for the regular order and the urgent order in the
system with S-D, V =V, + V. Similarly, we considered a single average intensity
by adding the average intensity calculated separately for the regular order and the
urgent order in the system with S-D, R, = RR, + RR,,

When we look at all cases in Tables 3 and 4, it is seen that the values of the
probability of customers leaving the system are higher and the values of the average
number of customers in the system are lower in the system with S-I compared to the
system with S-D. The average number of items in the state-independent system is
less compared to that in the state-dependent system. When the average volume of
deliveries and the average intensity of the order of both systems are examined, it is
found that the values of the average volume of deliveries are higher and the values
of the average intensity of the order are lower in the system with S-I. In other words,
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Fig.12 RR, vs A, u, 7 for ER-S (left side) and HE-S (right side)

when the case of the urgent order is ignored (the system with S-I), larger orders are
placed and the ordering frequency is lower.

6.3 Optimization

We define two functions for the expected total cost and discuss optimum inven-
tory policies for some system parameters. That is, the expected total cost function
for the system with S-D is given in (40) and the expected total cost function for
the system with S-I is given in (41).
For the system with state-dependent (S-D), the function is given by

ETCp = [k, + ¢, V,|RR, + |k, + ¢,V,|RR, + 1, + ¢/TP )y + Ly (40)
where k, (k,) is the fixed price of one regular (urgent) order, c, (c,) is the unit price
of the regular (urgent) order, ¢, is the holding price per item in the inventory per unit
of time, c; is the cost incured due to the loss of a customer and c,, is the waiting cost
of a customer in the system.
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For the system with state-independent (S-I), the function is given by

ETC, = [k +c V|Rg + ¢, 1, + ¢;tP + ¢, Ly, 41)
where k is the fixed price of one order and c is the unit price of the order.

To find the optimum values of the inventory level (that minimize ETC)), we
fix A=2,u=4,v;=1,v, =25and r = 3, and vary the reorder points s = 3,5,7
and the impatient rates = = 1, 3, 6. We fix also the unit values of the defined above
costs by k, =10, k, =30, ¢, = 15,¢, =45, ¢, =10, ¢, = 150 and c,, = 80.

To find the optimum values of the inventory level (that minimize ETC,;), we fix
v =1 and the unit values of the defined costs by k = 10, ¢ = 15. Other parameter
values (4, u, 1,5, 7) and cost values (¢, ¢;, ¢,,) are the same as those defined above.

Under various distributions of the service times and the inter-arrival times, the
optimum values of the maximum inventory level S that minimize the expected total
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Fig. 14 RR, vs A, u, 7 for ER-S (left side) and HE-S (right side)

cost are given in Tables 5, 6 and 7. At this point, we would like to emphasize that
the values given in parentheses are the results of the state-independent system (S-I).

From the Tables 5, 6 and 7, we conclude that for specific MAP (except PC-A
process) the optimal solution §* almost same for various service times distributions.
Also note that in case PC-A process (see Tables 5, 6 and 7) and NC-A process (see
Tables 6 and 7) for some initial data optimal solution does not exist, i.e. ETCj, (also
ETC;) is un-bounded increasing function (this is indicated by the symbol "-").

When the two systems are compared, it is seen in Tables 5, 6 and 7 that the
obtained optimum values of S for the system with S-I (given in parentheses) are
equal to or greater than the optimum values of S in the system with S-D. It can be
said that the difference between the values of § is affected by the impatience rate r,
the variation in service times and the variation in interarrival times, and positively
correlated arrivals. These differences are more pronounced in the case where the
impatience rate is low, in the case of HE-S, in the case of HE-A, or in the case of
PC-A. In other words, in these scenarios, the maximum inventory level is desired
to be higher in the system with S-I. Finally, it is observed that the values of ETC,
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Table 2 The values of the

As It Is Varied It Is Fixed
system parameters for the case
of state-independent The arrival rate: A r=4,u=4,v=1,7r=5
The service rate: u r=4,A=16,v=1,7t=5
The threshold point to switch order A=38u=4v=17=5
mode: r

(given in parentheses) are greater than the values of ETC/, even when the values of
S are equal.

7 Conclusion
An infinite QIS model with a queue-dependent replenishment policy is proposed,

in which customers arrive according to the MAP and customer service times follow
the PH distribution. Customers in the queue lose patience as inventory levels drop
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Table 3 Comparison of the two systems for the performance measures under arrival ER-A

S-D S-1 S-D S-1 S-D S-1 S-D S-1 S-D S-1

PH A P lost P, Tost Lav L I av 7 14 \%4 RR R R

‘av av

ER-S 22 0.044 0.046 0.807 0.805 4054 4039 1950 1970 0.368 0.364
3 0.087 0.107 1.709 1.651 37791 3.660 2293 2465 0464 0435
3.8 0.088 0.192 8.058 5454 4054 3368 1943 2838 0.636 0.486
HE-S 22 0.046 0.061 2.127 2032 4249 4137 1760 1.897 0362 0.342
3 0.082 0.131 5.857 5.054  4.147 3.805 1.927 2347 0.463 0.403
38 0.097 0.219 32.806 18595 4366 3.539 1.686 2.706 0.594 0.449

PH 4 P, P, La I 14

av av av

)
~
~
<>

Ry Ry

ER-S 1.8 0014 0.030 3.959 3.046 4.676 4439 1.122 1451 0320 0.285
26 0019 0.021 0.992 0.981 4426 4405 1465 1495 0296 0.292
34 0018 0.018 0.617 0.616 4393 4389 1503 1508 0295 0.294
HE-S 1.8 0020 0.050 15562 9.160 4940 4.610 0914 1.349 0299 0.251
26 0.022 0.035 2958 2.681 4.632 4514 1277 1426 0.287 0.268
34 0021 0.027 1.467 1.421 4.521 4465 1394 1463 0.287 0.278

PH P Ppy Le Ly e L, V¥ Ry R
ER-S 3 0.073 8.128 4.153 1.814 0.657
5 0.101 0.192 7.953 5.454 3.965 3368 2.059 2838 0.617 0.486
7 0.124 7.666 3.814 2.257 0.584
HE-S 3 0.092 33.048 4.406 1.636 0.601
5 0.102 0.219 32.587 18595 4333 3539 1.726 2.706 0.588 0.449
7 0.110 32.176 4.277 1.794 0.579

to zero. The replenishment process is governed by the (s, S)-policy as follows: if the
inventory level drops to the reorder point and the number of customers in the system
is less than a predetermined threshold, then a regular order is made; when the inven-
tory level drops to the reorder point and the number of customers in the system is
greater than or equal to the specified threshold, the regular order is immediately can-
celled and an urgent order is sent. Lead times follow exponential distributions with
different averages depending on the order type. An easily checkable condition for
the stability of the constructed multi-dimensional Markov chain is established and
its probabilistic meaning is explained. Steady state probabilities were obtained using
a matrix geometric method, and key performance indicators were calculated using
these probabilities.

The queue-independent replenishment policy is also considered for the studied
queueing-inventory model. So, we ignore the threshold value depend on the number
of customers in the system (Namely, the urgent order situation is ignored). Regard-
less of the number of customers in the system, an order is placed when the inventory
number drops to s. Except for the replenishment policy, all assumptions of the stud-
ied model are valid for the state-independent queueing-inventory model.
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Table 4 Comparison of the two systems for the performance measures under arrival HE-A

S-D S-1 S-D S-1 S-D S-1 S-D S-1 S-D S-1

PH A P lost P, Tost Lav L ]ztv 1 ) 14 \%4 RR RR

‘av av

ER-S 22 0.047 0.080 2.005 1.891 4525 4304 1524 1.802 0369 0.320
3 0.056 0.141 6.325 5.448 4407 3.873 1.605 2296 0.520 0.398
3.8 0.058 0209 39.607 22.830 4.377 3460 1.551 2.755 0.683 0.470
HE-S 22 0.054 0.088 3.669 3372 4616 4375 1469 1.759 0348 0.305
3 0.075 0.155 10.786 8960 4512 3984 1.575 2225 0471 0374
38 0.088 0.230 61.286 34926 4.527 3.614 1513 2650 0.606 0.436

PH H P lost P lost Luv 24 I av 14

~
<>

Ry Ry

ER-S 1.8 0.008 0.045 18482 10.147 4972 4546 0.764 1374 0.342 0.266
26 0.020 0.044 2819 2.420 4.830 4.610 1.087 1.380 0.302 0.258
34 0.028 0.042 1.278 1.215 4739 4628 1252 1390 0279 0.256
HE-S 18 0.020 0.062 27.655 14.660 5.093 4720 0.773 1291 0300 0.235
26 0.028 0.054 5.074 4.277 4922 4709 1.061 1331 0277 0.240
34 0032 0.049 2422 2.251 4.829 4.693 1.193 1356 0267 0.244

PH r P, Py, Le L, L L, V¥V Ry R
ER-S 3 0.055 39.645 4.395 1.519 0.687
5 0.061 0.209 39.553 22.830 4352 3460 1581 2755 0.678 0.470
7 0.068 39.403 4.306 1.640 0.667
HE-S 3 0.085 61.436 4.545 1.484 0.609
5 0.091 0.230 61.125 34926 4.506 3.614 1.538 2.650 0.602 0.436
7 0.096 60.801 4.469 1.583 0.595

Under various arrival processes and service time distributions, the behavior
of the some performance measures and optimum inventory policy are discussed.
Numerical experiments demonstrate the influence of positive and negative corre-
lations on the system performance measures, and show that the variability in the
servis times and the inter-arrival times play a key role in the behavior of system
performance measures. In addition, the expected total cost calculated based on
the system performance metrics is also affected from the variability and correla-
tions. When the two systems are compared, it is seen that the values of the prob-
ability of customers leaving the system are higher and the values of the average
number of customers in the system are lower in the state-independent system with
compared to the state-dependent system. Also, in the comparative studies, it is
seen that the obtained optimum values of S for the state-independent system are
equal to or greater than the optimum values of S in the state-dependent system.
It can be said that the difference between the values of § is affected by the the
variability in service times and the variability in interarrival times, and positively
correlated arrivals. These differences are more pronounced in the case of high
variability and in the case of a positive correlation.
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Table5 Optimum values of S*

and ETC* for reorder point s = 3 T=6 T=3 =1
MAP PH S* ETC* S* ETC* S* ETC*
ER-A ER-S 7 132561 7 131.227 7 128.859
(8) (134.962) (8) (135.392) (9) (140.419)
EX-S 7 140.739 7 139.634 7 137.766
(7) (144.067) (8) (144.967) (9) (150.909)
HE-S 6 214011 7 217.027 7 220.741
(6) (216.997) (8) (227.313) (10) (245.967)
EX-A ER-S 7 147.040 7 145.757 7 144.375
(8) (152.706) (8) (154.620) (9) (162.612)
EX-S 7 156346 7 155.398 7 154.547
(8) (162.405) (8) (164.946) (10) (174.136)
HE-S 6 230469 7 234.812 8 239.959
(6) (233.685) (8) (247.471) (11) (269.626)
HE-A ER-S 7 205765 8 209.602 8 214.459
(8) (216.007) (10) (233.941) (13) (260.413)
EX-S 7 222082 8 227.160 8 233.045
(7) (230.691) (10) (251.139) (14) (279.410)
HE-S 5 311.840 7 330.089 9 344.328
(5) (308.748) (9) (353.803) (15) (397.009)
NC-A ER-S 8 158953 8 157.583 7 156.180
(8) (165.479) (8) (167.447) (9) (175.698)
EX-S 8 167.464 8 166.384 7 165.489
(8) (173.918) (8) (176.541) (10) (185.874)
HE-S 6 238.665 6 243.667 8 248.391
(6) (242.204) (8) (256.311) (11) (278.992)
PC-A ER-S - - 14 4128326 22  4205.208
=) ) (29) (4285.574) (51) (4491.633)
EX-S - - 15  4146.899 23 4231.566
=) & (30) (4299.686) (52) (4510.130)
HE-S - - 17 4250.093 28 4355.975
=) & (31) (4397.769) (55) (4627.718)
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Table6 Optimum values of S*
and ETC* for reorder point s = 5

T=6 T=3 =1
MAP PH S* ETC* S* ETC* S* ETC*
ER-A ER-S 8 137.011 8 136.294 8 135.012
(8) (138.845) (8) (139.099) (8) (141.854)
EX-S 8 14549 8 144.907 8 143.884
(8) (148.005) (8) (148.474) (9 (151.787)
HE-S 7 222214 7 223.792 8 225.495
(7) (224.627) (8) (231.200) (10) (243.320)
EX-A ER-S 8 151423 8 150.741 8 149.958
(8) (155.686) (8) (156.853) (9) (161.285)
EX-S 8 161.139 8 160.609 8 160.053
(8) (165.538) (8) (167.088) (9) (172.241)
HE-S 7 238.887 7 241.234 8 243.705
(7) (241.122) (8) (250.395) (10) (265.153)
HE-A ER-S 8 211.506 8 213.289 8 215.768
8) (217.662) (9) (230.427) (12) (248.705)
EX-S 8 228.653 8 230.958 8 233.976
(8) (233.444) (9) (247911) (12) (267.634)
HE-S - - 8 334.949 9 343.254
= ) (9) (352.789) (13) (385.223)
NC-A ER-S 8 163.131 8 162.425 8 161.745
(8) (168.022) (8) (169.230) (9) (174.560)
EX-S 8 171.799 8 171.237 8 170.759
8) (176.612) (8) (178.218) (9) (184.335)
HE-S - - 8 249.735 8 251.951
= ) 8) (258.774) (10) (273.798)
PC-A ER-S - - 11 4103.099 16 4144.778
= ) (25) (4242.615) (41) (4403.350)
EX-S - - 12 4120599 17 4170.076
= ) (25) (4258.278) (43) (4424.532)
HE-S - - 14 4224578 22 4296.760
= ) (28) (4363.490) (47) (4554.197)
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Table7 Optimum values of S*

and ETC* for reorder point s = 7 ’ ’ ’

MAP PH S* ETC* S* ETC* S* ETC*

ERA ERS 9 149334 9 148964 9 148294
9) (150.630) (9) (150.735) (9) (151.947)

EXS 9 157915 9 157620 9  157.098

(9) (159.602) (9) (159.810) (9) (161.302)

HE-S 9 236365 9 236890 9 237512

(9) (237.719) (9) (241.436) (10) (248.464)

EX-A ERS 9 163651 9 163318 9  162.933
(9) (166.280) (9) (166.869) (10) (169.279)

EXSS 9 173478 9 173222 9 172948

9) (176.071) (9) (176.863) (10) (179.730)

HES 9 253157 9 253994 9  255.020

O © (9) (259.456) (10) (268.672)

HEA BERS 9 224310 9 225226 9 226456
(9) (225.653) (10) (234.156) (11) (246.541)

EX-S 9 241552 9 242713 9 244.192

9) (242.016) (10) (251.736) (11) (265.244)

HE-S - - 9 345.897 9 350.496
= &) 9) (357.387) (12) (381.228)
NC-A ER-S 10 176944 - - 10 176.392
= (10) (179.580) (10) (181.504)
EX-S - - - - - -
(I = O (10) (190.703)
HE-S - - - - - -
(I G O (10) (276.940)
PC-A ER-S - - 11 4100314 13 4121.213
= &) (22) (4213.629) (35) (4338.899)
EX-S - 12 4115253 14 4142.575
= =) (22) (4229.907) (36) (4361.134)
HE-S - 13 4214397 18  4262.734
= =) (25) (4338.525) (41) (4496.716)

As a future research direction, one can point out the study of a single-source QIS
system with a hybrid queue-dependent replenishment policy, i.e. if the queue length
is less than some threshold, then the (s, Q)-policy is used, Q = § — s; if the queue
length is greater than or equal to this threshold, then the (s, Q)-policy is cancelled
and the (s, S)-policy is used with the same lead time. Another extension of this work
could be to consider the QIS model with a batch Markov process (BMAP) and with
(without) perishable inventories. The method proposed here has a limitation in that
it can be applied to QIS models with an infinite queue. Studying models with a finite
queue requires further research. This task is also the subject of our further research.
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