Journal of Contemporary Applied Mathematics V. 15, No 1, 2025, June ISSN 2222-5498, E-ISSN 3006-3183 https://doi.org/10.62476/jcam.151.10

Algebraic Points of Degree $l \geq 2$ over \mathbb{Q} on the Affine Curve $\mathcal{X}: n^2 = 3(m^5 - 1)$

E. H. Sow, O. Sall

Abstract. We determine the set of algebraic points of degree degree $l \geq 2$ over \mathbb{Q} on the curve \mathcal{X} given by the affine equation $n^2 = 3(m^5 - 1)$ and this result extends a result of Siksek who described in [5] the set of algebraic points of degree 1 on this curve.

Key Words and Phrases: Planes curves, Degree of algebraic points, Rationals points, Algebraic extensions - Jacobian

2010 Mathematics Subject Classifications: 14H50, 14H40, 11D68, 12F05

1. Introduction and main result

Let \mathcal{X} be a smooth algebraic curve of genus 2 defined over a numbers field K. We note by $\mathcal{X}(K)$ the set of points of \mathcal{X} with coordinates in K.

We denote by J the jacobian of \mathcal{X} and by j(P) the class $[T-\infty]$ of $T-\infty$, that is to say that j is the Jacobian diving $\mathcal{X} \longrightarrow J(\mathbb{Q})$. The Mordell-Weil group $J(\mathbb{Q})$ of rational points of the jacobian is a finite set (refer to [5]).

For a divisor D on \mathcal{X} , we note $\mathcal{L}(D)$ the $\overline{\mathbb{Q}}$ -vector space of rational functions F defined on \mathbb{Q} such that F = 0 or $div(F) \geq -D$; l(D) designates $\overline{\mathbb{Q}}$ -dimension of $\mathcal{L}(D)$. The goal is to determine the set of algebraic points of given degree $l \geq 2$ over \mathbb{Q} on the curve \mathcal{C} given by the affine equation

$$n^2 = 3(m^5 - 1) (1)$$

From [5] we have T = (1,0) et ∞ the rational points over \mathbb{Q} on this curve.

Our main result is given by the following theorem:

Theorem. The set of algebraic points of given degree $l \geq 2$ over \mathbb{Q} on the curve \mathcal{X} is given by:

$$\bigcup_{[K:\mathbb{Q}]\leq l} \mathcal{X}(K) = \mathcal{V}_0 \cup \mathcal{V}_1$$

with

$$\mathcal{V}_0 = \left\{ \left(m, -\frac{\sum_{i \leq \frac{l}{2}} a_i m^i}{\sum_{j \leq \frac{l-5}{2}} b_j m^j} \right) \mid a_i, b_j \in \mathbb{Q} \text{ and } m \text{ root of the equation } (\mathcal{E}_0) \right\},$$

$$\mathcal{V}_1 = \left\{ \left(m, -\frac{\sum\limits_{1 \leq \frac{l+1}{2}} a_i m^i}{\sum\limits_{j \leq \frac{l-4}{2}} b_j m^j} \right) \mid a_i, b_j \in \mathbb{Q} \ with \ \sum_{i \leq \frac{l+1}{2}} a_i = 0 \ et \ and \ m \ root \ of \ the \ equation \ (\mathcal{E}_1) \right\}$$

where

$$(\mathcal{E}_0): \left(\sum_{i \le \frac{l}{2}} a_i m^i\right)^2 = 3 \left(\sum_{j \le \frac{l-5}{2}} b_j m^j\right)^2 (m^5 - 1),$$

$$(\mathcal{E}_1): \left(\sum_{i \leq \frac{l+1}{2}} a_i m^i\right)^2 = 3 \left(\sum_{j \leq \frac{l-4}{2}} b_j m^j\right)^2 (m^5 - 1).$$

2. Auxiliary results

In [5], the Mordell-Weil group $J(\mathbb{Q})$ of \mathcal{X} is isomorph to $\mathbb{Z}/2\mathbb{Z}$ and \mathcal{X} is a hyperelliptic curve of genus g=2. Let m, n be two rational functions on \mathbb{Q} defined as follow:

$$m(M, N, Z) = \frac{M}{Z} et \ n(M, N, Z) = \frac{N}{Z}$$

The projective equation of \mathcal{X} is

$$\mathcal{M}: N^2 Z^3 = 3(M^5 - Z^5) \tag{2}$$

We denote by $\eta_1 = e^{i\frac{\Pi}{2}}$ and let's put $A_k = (0, \sqrt{3}\eta_1^{2k+1})$ for $k \in \{0, 1\}$. We denote by $\eta_2 = e^{i\frac{\Pi}{5}}$ and let's put $B_k = (\eta_2^{2k}, 0)$ for $k \in \{0, 1, 2, 3, 4\}$.

Let us designate by $\mathcal{D}.\mathcal{X}$ the intersection cycle of algebraic curve \mathcal{D} defined on \mathbb{Q} and \mathcal{X} .

Lemma 1.

- $div(m-1) = 2T 2\infty$
- $div(n) = B_0 + B_1 + B_2 + B_3 + B_4 5\infty$
- $div(m) = A_0 + A_1 2\infty$

Proof $\mathcal{X}: N^2Z^3 = 3(M^5 - Z^5)$ (projective equation)

- $div(m-1)=(M-Z=0).\mathcal{X}-(Z=0).\mathcal{X}$ For M=Z, we have $N^2=0$ with Z=1 or $Z^3=0$ with N=1. We obtain the point T=(1,0,1) with multiplicity 2 and the point $\infty=(0,1,0)$ with multiplicity 3. Hence $(M-Z=0).\mathcal{X}=2T+3\infty$ (*). Even if Z=0, then $M^5=0$; and for N=1, we have the point $\infty=(0,1,0)$ with multiplicity 5. Hence $(Z=0).\mathcal{X}=5\infty$ (**). The relations (*) and (**) implies that $div(m-1)=2T-2\infty$.
- Similarly we show that $div(n) = B_0 + B_1 + B_2 + B_3 + B_4 5\infty$ and $div(m) = A_0 + A_1 2\infty$

Lemma 2. [6]

- $\mathcal{L}(\infty) = \langle 1 \rangle$
- $\mathcal{L}(2\infty) = \langle 1, m \rangle = \mathcal{L}(3\infty)$
- $\mathcal{L}(4\infty) = \langle 1, m, m^2 \rangle$
- $\mathcal{L}(5\infty) = \langle 1, m, m^2, n \rangle$
- $\mathcal{L}(6\infty) = \langle 1, m, m^2, n, m^3 \rangle$

Lemma 3. [6]

A \mathbb{Q} -base of $\mathcal{L}(r\infty)$ is given by

$$\mathcal{B}_r = \left\{ m^i \mid i \in \mathbb{N} \text{ and } i \le \frac{r}{2} \right\} \cup \left\{ m^j n \mid j \in \mathbb{N} \text{ and } j \le \frac{r-5}{2} \right\}$$

Lemma 4. [5] $J(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} = \langle [T - \infty] \rangle = \{a [T - \infty], a \in \{0, 1\}\}.$

3. Proof of theorem

Given $S \in \mathcal{X}(\overline{\mathbb{Q}})$ with $[\mathbb{Q}[S] : \mathbb{Q}] = l$. The work of Siksek in [5] allows us to assume that $l \geq 2$. Note that S_1, S_2, \ldots, S_l are the Galois conjugates of S. Let's work with $t = [S_1 + S_2 + \cdots + S_l - l\infty] \in J(\mathbb{Q})$, according to Lemma 4 we have $t = a[T - \infty]$, $0 \leq a \leq 1$. So we have $[S_1 + S_2 + \cdots + S_l - l\infty] = a[T - \infty]$. For a = 0, we have $[S_1 + S_2 + \cdots + S_l - l\infty] = 0$; then there exist a function F

with coefficient in \mathbb{Q} such that $div(F) = S_1 + S_2 + \cdots + S_l - l\infty$, then $F \in \mathcal{L}(l\infty)$ and according to Lemma 3 we have

$$F(m,n) = \left(\sum_{i \le \frac{l}{2}} a_i m^i\right) + \left(n \sum_{j \le \frac{l-5}{2}} b_j m^j\right). \tag{3}$$

For the points S_i , we have

$$\left(\sum_{i \le \frac{l}{2}} a_i m^i\right) + \left(n \sum_{j \le \frac{l-5}{2}} b_j m^j\right) = 0.$$

$$(4)$$

hence $n=-\dfrac{\displaystyle\sum_{i\leq \frac{l}{2}}a_im^i}{\displaystyle\sum_{j\leq \frac{l-5}{2}}b_jm^j}$ and the relation $n^2=3(m^5-1)$ gives the equation

$$(\mathcal{E}_0): \left(\sum_{i \leq \frac{l}{2}} a_i m^i\right)^2 = 3 \left(\sum_{j \leq \frac{l-5}{2}} b_j m^j\right)^2 (m^5 - 1).$$

We find a family of points

$$\mathcal{V}_0 = \left\{ \left(\sum_{i \leq \frac{l}{2}} a_i m^i \atop m, -\frac{i \leq \frac{l}{2}}{\sum_{j \leq \frac{l-5}{2}} b_j m^j} \right) \mid a_i, b_j \in \mathbb{Q} \text{ and } m \text{ root of the equation } (\mathcal{E}_0) \right\}.$$

For a=1, we have $[S_1+S_2+\cdots+S_l-l\infty]=[T-\infty]=-[T-\infty]$; then there exist a function F with coefficient in $\mathbb Q$ such that $div(F)=S_1+S_2+\cdots+S_l+T-(l+1)\infty$, then $F\in\mathcal L((l+1)\infty)$ and according to Lemma 3 we have

$$F(m,n) = \left(\sum_{i \le \frac{l+1}{2}} a_i m^i\right) + \left(n \sum_{j \le \frac{l-4}{2}} b_j m^j\right). \tag{5}$$

We have F(T) = 0 implies the relation

$$\sum_{i \le \frac{l+1}{2}} a_i = 0$$

.

For the points S_i , we have

$$\left(\sum_{i \le \frac{l+1}{2}} a_i m^i\right) + \left(n \sum_{j \le \frac{l-4}{2}} b_j m^j\right) = 0.$$

$$(6)$$

hence $n=-\frac{\displaystyle\sum_{i\leq \frac{l+1}{2}}a_im^i}{\displaystyle\sum_{j\leq \frac{l-4}{2}}b_jm^j}$ and the relation $n^2=3(m^5-1)$ gives the equation

$$(\mathcal{E}_1): \left(\sum_{i \leq \frac{l+1}{2}} a_i m^i\right)^2 = 3 \left(\sum_{j \leq \frac{l-4}{2}} b_j m^j\right)^2 (m^5 - 1).$$

We find a family of points

$$\mathcal{V}_1 = \left\{ \left(\sum_{\substack{i \leq \frac{l+1}{2} \\ j \leq \frac{l-4}{2}}} a_i m^i \right) \mid a_i, b_j \in \mathbb{Q} \text{ with } \sum_{i \leq \frac{l+1}{2}} a_i = 0 \text{ et and } m \text{ root of the equation } (\mathcal{E}_1) \right\}.$$

References

- [1] R. F. Coleman, Effective Chabauty method, Duke Math. J. vol.52, no. 3, 765–770, 1985.
- [2] P. A. Griffiths, Introduction to algebraic curves, Translations of mathematical monographs volume 76. American Mathematical Society, Providence, 1989.
- [3] M. Hindry and J. H. Silverman, Introduction to algebraic curves, An Introduction, Graduate Texts in Mathematics, January 1, 2000.
- [4] S. Siksek and M. Stoll, Partial descent on hyper elliptic curves and the generalized Fermat equation $x^3 + y^4 + z^5 = 0$, Bulletin of the LMS 44, 151–166, 2012.
- [5] S. Siksek, Explicit Chabauty over number fields, Algebra & Number Theory, Volume 7, 2013.

- [6] E. H. Sow et al, Algebraic points on the genus 2 curve $C:y^2=5(1-x^5)$, J. Contemp. Appl. Math. 14, No. 1, 28–32, J. Contemp. Appl. Math. 14, No. 1, 28–32, 2024.
- [7] L. C. Washington, Elliptic curves, Number Theroy and Cryptography, Second Edition, 2008.

El Hadji Sow

Assane Seck University, Ziguinchor, SENEGAL E-mail: elpythasow@yahoo.fr; e.sow4727@zig.univ.sn

Oumar Sall

Assane Seck University, Ziguinchor, SENEGAL

E-mail: osall@univ-zig.sn

Received 23 December 2024 Accepted 26 March 2025