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Abstract. In this article the questions of existence and uniqueness of (ω, c)−periodic
solution of boundary value problem for an impulsive system of ordinary differential equa-
tions with product of two nonlinear functions and mixed maxima are studied. This prob-
lem is reduced to the investigation of solvability of the system of nonlinear functional-
integral equations. The method of contracted mapping is used in the proof of unique
solvability of nonlinear functional-integral equations in the space BD ([0, ω],Rn). Ob-
tained an estimate for the (ω, c)−periodic solution of the studying problem.
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1. Introduction. Problem statement

The dynamics of evolving processes sometimes undergoes abrupt changes.
Often we have to consider differential equations, the solutions of which are func-
tions with first kind discontinuities at times. Impulsive differential and integro-
differential equations have applications in biological, chemical and physical sci-
ences, ecology, biotechnology, industrial robotic, pharmacokinetics, optimal con-
trol, etc. [1]–[7]. In particular, some problems with impulsive effects appear in
biophysics at micro- and nano-scales [8]–[11]. A lot of publications are devoted
to study differential equations with impulsive effects [12]–[37]. (ω, c)−periodic
solutions of the differential equations are studied in the works [38]–[43].
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A continuous function f(t) : R → X is (ω, c)−periodic, if there exists a real
number c ∈ (0, 1)∪(1,∞), that f(t+ω) = c ·f(t) for all t ∈ R, where 0 < ω < ∞,
X ∈ Rn is closed set.

On the interval Ω ≡ [0, ω] \
{
ti
}
for i = 1, 2, ..., p we consider the questions

of existence of the (ω, c)−periodic solutions of the nonlinear impulsive system of
differential equations with mixed maxima

x′(t) =

= g
(
t, x(t),max

{
x(τ)

∣∣τ ∈
[
δ1(t) |̂ δ2(t)

]})
f
(
t, x(t),max

{
x(τ)

∣∣τ ∈
[
δ1(t) |̂δ2(t)

]})
,

(1)

where
[
δ1(t) |̂ δ2(t)

]
=

[
min {δ1(t); δ2(t)} , max {δ1(t); δ2(t)}

]
, δκ(t) ∈ C

[
δ0, h

]
,

0 < δ0 = min
0≤t≤ω

δκ(t), δ0 < h = max
0≤t≤ω

δκ(t) < ω, κ = 1, 2, g(t, x, y) ∈ C
(
[0, ω] ×

X× X,Rn
)
, f(t, x, y) ∈ C

(
[0, ω]× X× X,Rn

)
.

The equation (1) we study with (ω, c)−periodic condition

x(ω) = c · x(0), c ∈ (0, 1) ∪ (1,∞). (2)

We assume that on the interval

I1 = [0, t1] ∪ [t2, t3] ∪ . . . ∪ [tp−3, tp−2] ∪ [tp−1, tp]

there holds δ1(t) < δ2(t) and the equation (1) has the form

x′(t) =

= g
(
t, x(t),max

{
x(τ)|τ ∈

[
δ1(t), δ2(t)

]})
f
(
t, x(t),max

{
x(τ)|τ ∈

[
δ1(t), δ2(t)

]})
.

And on the interval

I2 = [t1, t2] ∪ [t3, t4] ∪ . . . ∪ [tp−2, tp−1] ∪ [tp, tp+1]

there holds δ1(t) > δ2(t) and the equation (1) has the form

x′(t) =

= g
(
t, x(t),max

{
x(τ)|τ ∈

[
δ2(t), δ1(t)

]})
f
(
t, x(t),max

{
x(τ)|τ ∈

[
δ2(t), δ1(t)

]})
.

If we put δ1
(
ti
)
= δ2

(
ti
)
, i = 1, 2, . . . , p, then there is no impulsive effect in the

equation (1). So, we suppose that δ1
(
t+i

)
̸= δ2

(
t−i

)
, δ2

(
t+i

)
̸= δ1

(
t−i

)
, i =

1, 2, . . . , p. Consequently, the problem (1), (2) we study with nonlinear impulsive
effects

x
(
t+i

)
− x

(
t−i

)
= Fi

(
x
(
ti
))
, i = 1, 2, ..., p, (3)
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where 0 = t0 < t1 < . . . < tp < tp+1 = ω, x
(
t+i

)
and x

(
t−i

)
right and left-hand

side limits, Fi(x) ∈ C
(
X,Rn

)
, Fi = Fi+p, ti+p = ti + ω.

In general, the solutions of differential equations with maxima have properties
different from the properties of the solutions of differential equations without
maxima. If we consider the equation

x′(t) = f
(
t, x(t),max

{
x(τ)|τ ∈

[
h1(t), h2(t)

]})
,

then the increasing solutions coincide with the increasing solutions of the equation

x′(t) = f
(
t, x(t), x

[
h2(t)

])
.

The decreasing solutions coincide with the decreasing solutions of the equation

x′(t) = f
(
t, x(t), x

[
h1(t)

])
.

Periodic solutions of differential equations behave differently from periodic
solutions of differential equations without maxima. If we consider the func-
tion max

{
sin τ |τ ∈

[
t− h(t), t

]}
, the properties of this function differ from the

properties of the functions sin t and sin(t − h(t)). For example, the function
max

{
sin τ |τ ∈

[
t − π, t

]}
is not negative on the axis (−∞,∞). The function

max
{
sin τ

∣∣τ ∈
[
t− 2π, t

]}
is constant on the axis (−∞,∞) and equal to 1.

If we consider (2π, c)−periodic function et sin t, this function has resonance on
the interval (0,∞), where c = e2π. The function max

{
eτ sin τ

∣∣τ ∈
[
t− π, t

]}
=

etmax
{
sin τ

∣∣τ ∈
[
t− π, t

]}
has positive resonance on the interval (0,∞).

Therefore, the study of differential equations with maxima is relevant. In the
case of differential equations with mixed maxima, the presence of impulsive effects
is not fictitious. Differential equations with product of two nonlinear functions
appear in solving nonlinear partial differential equations of parabolic and hyper-
bolic types (see, [44]). We note that the present paper is further development of
the works [45]–[47].

We recall that by C ([0, ω],Rn) is denoted the Banach space with continuous
vector functions x(t) on the segment [0, ω] and this space is equipped with the
norm

∥x(t) ∥C[0,ω] =

√√√√ n∑
j=1

max
0≤t≤ω

∣∣xj(t) ∣∣.
By PC

(
[0, ω],Rn

)
is denoted the following linear vector space

PC ([0, ω],Rn) =
{
x : [0, ω] → Rn; x(t) ∈ C ((ti, ti+1] ,Rn) , i = 1, ..., p

}
,
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where limits x
(
t+i

)
and x

(
t−i

)
(i = 0, 1, ..., p) exist and bounded; x

(
t−i

)
= x

(
ti
)
.

Note, that the linear vector space PC
(
[0, ω],Rn

)
is Banach space, if we equip it

with the norm∥∥x(t)∥∥
PC[0,ω]

= max
{
∥x(t) ∥C(ti,ti+1]

, i = 1, 2, . . . , p
}
.

We use also the vector space BD ([0, ω],Rn), which is Banach space with the
following norm

∥x(t) ∥BD[0,ω] = ∥x(t) ∥PC[0,ω] + h ·
∥∥x′(t)∥∥

PC[0,ω]
,

where 0 < h = const.

Formulation of problem. To find the (ω, c)−periodic function x(t) ∈
BD ([0, ω],Rn), which for all t ∈ Ω satisfies the system of differential equations
(1), (ω, c)−periodic condition (2) and for t = ti, i = 1, 2, . . . , p satisfies the
nonlinear limit condition (3).

2. Reduction to functional-integral equations

Let the function x(t) ∈ BD ([0, ω],Rn) is a solution of the (ω, c)−periodic
boundary value problem (1)–(3). Then, after integration on the intervals
(0, t1] , (t1, t2] , . . . , (tp, tp+1], we have:

t1∫
0

g(s, x, y)f(s, x, y)ds =

t1∫
0

x′(s)ds = x
(
t−1

)
− x(0+), (4)

t2∫
t1

g(s, x, y)f(s, x, y)ds =

t2∫
t1

x′(s)ds = x
(
t−2

)
− x

(
t+1

)
, (5)

t3∫
t2

g(s, x, y)f(s, x, y)ds =

t3∫
t2

x′(s)ds = x
(
t−3

)
− x

(
t+2

)
, (6)

...

ω∫
tp

g(s, x, y)f(s, x, y)ds =

tp+1∫
tp

x′(s)ds = x
(
t−p+1

)
− x

(
t+p

)
. (7)

13



From the formulas (4)–(7) and x(0+) = x(0), x
(
t−p+1

)
= x(t), on the interval

(0, ω] we have
t∫

0

g(s, x, y)f(s, x, y)ds =

= −x(0)−
[
x
(
t+1

)
− x (t1)

]
−
[
x
(
t+2

)
− x (t2)

]
− . . . −

[
x
(
t+p

)
− x (tp)

]
+ x(t).

Hence, taking into account the impulsive condition (3) in the last equality, we
obtain

x(t) = x(0) +
∑

0<ti<t

Fi (x (ti)) +

t∫
0

g(s, x, y)f(s, x, y)ds. (8)

From (8) we have

x(ω) = x(0) +
∑

0<ti<ω

Fi (x (ti)) +

ω∫
0

g(s, x, y)f(s, x, y)ds. (9)

Let the function x(t) ∈ BD ([0, ω],Rn) in (8), satisfies the boundary value con-
dition (2). Then from (9) we have

x(0) =
1

c− 1

∑
0<ti<ω

Fi (x (ti)) +
1

c− 1

ω∫
0

g(s, x, y)f(s, x, y)ds. (10)

Substituting (10) into (8), we obtain the functional differential equation

x(t) = J(t;x) ≡ 1

ν

∑
0<ti<ω

Fi (x (ti)) +
∑

0<ti<t

Fi (x (ti))+

+
1

ν

ω∫
0

g
(
s, x(s),max

{
x(τ)

∣∣τ ∈
[
δ1̂|δ2

]})
f
(
s, x(s),max

{
x(τ)

∣∣τ ∈
[
δ1̂|δ2

]})
ds+

+

t∫
0

g
(
s, x(s),max

{
x(τ)

∣∣τ ∈
[
δ1̂|δ2

]})
f
(
s, x(s),max

{
x(τ)

∣∣τ ∈
[
δ1̂|δ2

]})
ds,

(11)
where δκ = δ1(s), κ = 1, 2, ν = c− 1 ̸= 0.
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3. Main results

Lemma 1. Assume that there exist positive quantities Mg, Mf , MFi such that
for all t ∈ [0, ω] are fulfilled the following conditions:
1). ∥ g(t, x, y) ∥C[0,ω] ≤ Mg < ∞, ∥ f(t, x, y) ∥C[0,ω] ≤ Mf < ∞;
2). max

1≤i≤p
∥Fi (x(ti)) ∥C[0,ω] ≤ MFi < ∞.

Then for the equation (11) is true the following estimate

∥ J(t;x) ∥PC[0,ω] ≤ p
1 + | ν |
| ν |

MFi +
ω + T | ν |

| ν |
MgMf . (12)

Proof. From the equation (11) we obtain

∥ J(t;x) ∥PC[0,ω] ≤
1

| ν |
∑

0<ti<ω

∥Fi∥C[0,ω] +
∑

0<ti<t

∥Fi∥C[0,ω]+

+
1

| ν |

ω∫
0

∥ g ∥C[0,ω] ∥ f ∥C[0,ω] ds+

t∫
0

∥ g ∥C[0,ω] ∥ f ∥C[0,ω] ds ≤

≤ p
1 + | ν |
| ν |

max
1≤i≤p

∥Fi ∥C[0,ω] +
ω + T | ν |

| ν |
∥ g ∥C[0,ω] ∥ f ∥C[0,ω] . (13)

From the estimate (13) follows (12). Lemma 1 is proved.

Lemma 2. For the difference of two functions with maxima there holds the fol-
lowing estimate∥∥∥max

{
x(τ)

∣∣τ ∈
[
λ1(s)̂|λ2(s)

]}
−max

{
y(τ)

∣∣τ ∈
[
λ1(s)̂|λ2(s)

]} ∥∥∥
PC[0,ω]

≤

≤ ∥x(t)− y(t) ∥PC[0,ω] + h
∥∥x′(t)− y′(t)

∥∥
PC[0,ω]

= ∥x(t)− y(t) ∥BD[0,ω] , (14)

where h = max
0≤t≤ω

∣∣λ2(t)− λ1(t)
∣∣.

Proof. For definiteness, we assume that λ1(t) < λ2(t). It is obvious that there
the following relation

max
{
x(τ)

∣∣τ ∈
[
λ1(t), λ2(t)

]}
= max

{
[x(τ)− y(τ) + y(τ)]

∣∣τ ∈
[
λ1(t), λ2(t)

]}
≤

≤ max
{
[x(τ)− y(τ)]

∣∣τ ∈
[
λ1(t), λ2(t)

]}
+max

{
y(τ)

∣∣τ ∈
[
λ1(t), λ2(t)

]}
is true. Hence, we obtain that

max
{
x(τ)

∣∣τ ∈
[
λ1(t), λ2(t)

]}
−max

{
y(τ)

∣∣τ ∈
[
λ1(t), λ2(t)

]}
≤
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≤ max
{
[x(τ)− y(τ)]

∣∣τ ∈
[
λ1(t), λ2(t)

]}
. (15)

We fix the variable t and denote by s1 and s2 the points of the segment[
λ1(t), λ2(t)

]
, on which the maximums of the functions x(t) and y(t) are reached:

max
{
x(τ)

∣∣τ ∈
[
λ1(t), λ2(t)

]}
= x(s1), max

{
y(τ)

∣∣τ ∈
[
λ1(t), λ2(t)

]}
= y(s1),

max
{
[x(τ)− y(τ)]

∣∣τ ∈
[
λ1(t), λ2(t)

]}
= x(s2)− y(s2).

The inequality (15) we rewrite as

max
{
x(τ)

∣∣τ ∈
[
λ1(t), λ2(t)

]}
−max

{
y(τ)

∣∣τ ∈
[
λ1(t), λ2(t)

]}
≤

≤ x(s2)− y(s2). (16)

Subtracting x(s1)− y(s1) from both sides of (16), we obtain

max
{
x(τ)

∣∣τ ∈
[
λ1(t), λ2(t)

]}
−max

{
y(τ)

∣∣τ ∈
[
λ1(t), λ2(t)

]}
− x(s1) + y(s1) ≤

≤ x(s2)− y(s2)− x(s1) + y(s1), s1, s2 ∈
[
λ1(t), λ2(t)

]
. (17)

We consider the right-hand side of (17) and use the Lagrange’s Mean-value the-
orem:

x(s2)− y(s2)− x(s1) + y(s1) = [x(s2)− x(s1)]− [y(s2)− y(s1)] =

= (s2 − s1)x
′(s̄)− (s2 − s1)y

′(¯̄s) = (s2 − s1)[x
′(s̄)− y′(¯̄s)] ≤

≤ h0 ·
∣∣x′(s̄)− y′(¯̄s)

∣∣ , h0 = | s2 − s1 | , s̄, ¯̄s ∈ (s1, s2). (18)

From the inequalities (17) and (18) we have

max
{
x(τ)

∣∣τ ∈
[
λ1(t), λ2(t)

]}
−max

{
y(τ)

∣∣τ ∈
[
λ1(t), λ2(t)

]}
− x(s1) + y(s1) ≤

≤ h0 ·
∣∣x′(s̄)− y′(¯̄s)

∣∣
or

max
{
x(τ)

∣∣τ ∈
[
λ1(t), λ2(t)

]}
−max

{
y(τ)

∣∣τ ∈
[
λ1(t), λ2(t)

]}
≤

≤ [x(s1)− y(s1)] + h0 ·
∣∣x′(s̄)− y′(¯̄s)

∣∣ .
Hence, we obtain∣∣max

{
x(τ)

∣∣τ ∈
[
λ1(t), λ2(t)

]}
−max

{
y(τ)

∣∣τ ∈
[
λ1(t), λ2(t)

]} ∣∣ ≤
≤ |x(s1)− y(s1) |+ h0 ·

∣∣x′(s̄)− y′(¯̄s)
∣∣ . (19)

Proceeding in (19) to the norm in the space of continuous functions C[0, T ], for
h = max

0≤t≤T
|λ2(t)− λ1(t) | ≥ h0 we arrive at (14). The case λ1(t) > λ2(t) is proved

similarly. The Lemma 2 is proved.
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Theorem 1. Assume that the conditions of the Lemma 1 are fulfilled and there
exist positive quantities L1, L2, L3i such that for all t ∈ Ω are fulfilled the follow-
ing conditions:
1). ∥ g (t, x1, y1)− g (t, x2, y2) ∥ ≤ L1 [∥x1 − x2 ∥+ ∥ y1 − y2 ∥] ;
2). ∥ f (t, x1, y1)− f (t, x2, y2) ∥ ≤ L2 [∥x1 − x2 ∥+ ∥ y1 − y2 ∥];
3). ∥Fi (t, x1)− Fi (t, x2) ∥ ≤ L3i ∥x1 − x2 ∥ ;
4). The radius of the inscribed ball in X is greater than

p
1 + | ν |
| ν |

MFi +
ω + T | ν |

| ν |
MgMf ;

5). ρ < 1, where ρ = β1 + hβ2 and β1, β2 are defined from (23), (26) below.

Then the problem (1)–(3) has a unique (ω, c)−periodic solution for all t ∈
[0, ω].

Proof. The theorem we proof by the fixed-point method. According to the
theorem condition, we have

f(t+ ω, x(t+ ω), y(t+ ω)) = f(t+ ω, c x(t), c y(t)) = c f(t, x(t), y(t)).

We differentiate (11):

x′(t) = J(t;x′) ≡

≡ g
(
t, x(t),max

{
x(τ)

∣∣τ ∈
[
δ1̂|δ2

]})
f
(
t, x(t),max

{
x(τ)

∣∣τ ∈
[
δ1̂|δ2

]})
, (20)

where δκ = δκ(t), κ = 1, 2.

For the difference of two operators in (11), to obtain estimate, we use the
following approach:

∥ g(x)f(x)− g(y)f(y) ∥ ≤ ∥ g(x)f(x)− g(y)f(x) ∥+ ∥ g(y)f(x)− g(y)f(y) ∥ ≤

≤ ∥ f(x) ∥ ∥ g(x)− g(y) ∥+ ∥ g(y) ∥ ∥ f(x)− f(y) ∥ .

Consequently, from (11) we have

∥J(t;x)− J(t; y)∥PC[0,ω] ≤

≤ 1

| ν |
∑

0<ti<ω

∥Fi (x (ti))− Fi (y (ti))∥C[0,ω]+
∑

0<ti<t

∥Fi (x (ti))− Fi (y (ti))∥C[0,ω]+

+
1

| ν |

ω∫
0

[∥∥∥ f (
s, x(s),max

{
x(τ)

∣∣τ ∈
[
δ1̂|δ2

]}) ∥∥∥
C[0,ω]

×
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×
∥∥∥ g (s, x(s),max

{
x(τ)

∣∣τ ∈
[
δ1̂|δ2

]})
− g

(
s, y(s),max

{
y(τ)

∣∣τ ∈
[
δ1̂|δ2

]}) ∥∥∥+
+
∥∥∥ g (s, y(s),max

{
y(τ)

∣∣τ ∈
[
δ1̂|δ2

]}) ∥∥∥
C[0,ω]

×

×
∥∥∥ f (

s, x(s),max
{
x(τ)

∣∣τ ∈
[
δ1̂|δ2

]})
− f

(
s, y(s),max

{
y(τ)

∣∣τ ∈
[
δ1̂|δ2

]}) ∥∥∥] ds+
+

t∫
0

[∥∥∥ f (
s, x(s),max

{
x(τ)

∣∣τ ∈
[
δ1̂|δ2

]}) ∥∥∥
C[0,ω]

×

×
∥∥∥ g (s, x(s),max

{
x(τ)

∣∣τ ∈
[
δ1̂|δ2

]})
− g

(
s, y(s),max

{
y(τ)

∣∣τ ∈
[
δ1̂|δ2

]}) ∥∥∥+
+
∥∥∥ g (s, y(s),max

{
y(τ)

∣∣τ ∈
[
δ1̂|δ2

]}) ∥∥∥
C[0,ω]

×

×
∥∥∥ f (

s, x(s),max
{
x(τ)

∣∣τ ∈
[
δ1̂|δ2

]})
− f

(
s, y(s),max

{
y(τ)

∣∣τ ∈
[
δ1̂|δ2

]}) ∥∥∥] ds,
where δκ = δκ(s), κ = 1, 2.

Then, by virtue of conditions of the theorem, we derive

∥J(t;x)− J(t; y)∥PC[0,ω] ≤

≤ p
1 + | ν |
| ν |

max
1≤i≤p

L3i ∥x (ti)− y (ti) ∥C[ti,ti+1]
+

+
MfL1 +MgL2

| ν |

ω∫
0

[
∥x(s)− y(s) ∥PC[0,ω] +

∥∥∥max
{
x(τ)

∣∣τ ∈
[
δ1(s)̂|δ2(s)

]}
−

−max
{
y(τ)

∣∣τ ∈
[
δ1(s)̂|δ2(s)

]} ∥∥∥
PC[0,ω]

]
ds+

+ [MfL1 +MgL2]

t∫
0

[
∥x(s)− y(s) ∥PC[0,ω] +

∥∥∥max
{
x(τ)

∣∣τ ∈
[
δ1(s)̂|δ2(s)

]}
−

−max
{
y(τ)

∣∣τ ∈
[
δ1(s)̂|δ2(s)

]} ∥∥∥
PC[0,ω]

]
ds. (21)

Appling Lemma 2 (inequality (14)) to the inequality (21), we obtain that

∥J(t;x)− J(t; y)∥PC[0,ω] ≤ p
1 + | ν |
| ν |

max
1≤i≤p

L3i ∥x(t)− y(t) ∥PC[0,ω]+

+
ω + T | ν |

| ν |
[MfL1 +MgL2]

[
2 ∥x(t)− y(t) ∥PC[0,ω] + h

∥∥x′(t)− y′(t)
∥∥
PC[0,ω]

]
≤

18



≤ β1 ∥x(t)− y(t) ∥PC[0,ω] + γ1h
∥∥x′(t)− y′(t)

∥∥
PC[0,ω]

, (22)

where

β1 = p
1 + | ν |
| ν |

max
1≤i≤p

L3i + 2
ω + T | ν |

| ν |
(MfL1 +MgL2) , (23)

γ1 =
ω + T | ν |

| ν |
[MfL1 +MgL2] .

Since β1 > γ1, then from (22) we have

∥J(t;x)− J(t; y)∥PC[0,ω] ≤ β1

[
∥x(t)− y(t) ∥PC[0,ω] + h

∥∥x′(t)− y′(t)
∥∥
PC[0,ω]

]
.

(24)

Now for the difference of two operators in (21), similarly, we have estimate∥∥J(t;x′)− J(t; y′)
∥∥ ≤

≤ [MfL1 +MgL2]
[
2 ∥x(t)− y(t) ∥PC[0,ω] + h

∥∥x′(t)− y′(t)
∥∥
PC[0,ω]

]
≤

≤ β2 ∥x(t)− y(t) ∥PC[0,ω] + γ2h
∥∥x′(t)− y′(t)

∥∥
PC[0,ω]

≤

≤ β2

[
∥x(t)− y(t) ∥PC[0,ω] + h

∥∥x′(t)− y′(t)
∥∥
PC[0,ω]

]
, (25)

where

β2 = 2 [MfL1 +MgL2] > γ2 = MfL1 +MgL2. (26)

We multiply both sides of (25) to h term by term. Then, adding the estimates
(24) and (25) term by term, we obtain that

∥J(t;x)− J(t; y)∥BD[0,ω] ≤ ρ · ∥x(t)− y(t) ∥BD[0,ω] , (27)

where ρ = β1 + hβ2.

According to the last condition of the theorem ρ < 1, so right-hand side of
(11) as an operator is contraction mapping. From the estimates (12) and (27)
implies that there exists a unique fixed point x(t), satisfying equation (1) and
(ω, c)−periodic condition (2). The theorem is proved.

4. Conclusion

The theory of differential equations plays an important role in solving applied
problems of sciences and technology. Especially, periodic and almost periodic
boundary value problems for differential equations with impulsive actions have
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many applications in mathematical physics, mechanics and technology, in partic-
ular in nanotechnology.

In this paper, we investigated the questions of (ω, c)−periodic solvability of
the system of impulsive differential equations (1) with (ω, c)−periodic (2) and
impulsive (3) conditions for t = ti, i = 1, 2, . . . , p. The nonlinear right-hand
side of this equation consists the product of two nonlinear functions and con-
struction of mixed maxima. The questions of existence and uniqueness of the
(ω, c)−periodic solution of the problem (1)–(3) are studied. The problem we
reduce to the (ω, c)−periodic solvability of the system of nonlinear functional
integral equations (11). The estimate (12) are obtained for (ω, c)−periodic solu-
tions of the problem (1)–(3).
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