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Abstract. This work presents a novel and comprehensive approach to the study of
Bertrand curves in 4-dimensional Minkowski space (R4

1). We introduce a new Frenet
frame specifically tailored for analyzing Bertrand curves in the (1, 3)-normal plane, which
allows us to derive significant relationships between the curvature functions κ1, κ2, and
κ3. Our analysis provides new formulas and explicit conditions for these curvatures,
offering a deeper understanding of their geometric properties in R4

1.
We investigate four distinct cases of Bertrand curves, each characterized by specific
conditions on the curvature functions. For each case, we derive explicit solutions and
relationships, demonstrating the versatility of our approach. Furthermore, we establish
the existence of a Bertrand mate curve ζ∗ for a given Bertrand curve ζ and derive the
parameter λ that defines the mate curve. This parameter is expressed in terms of the
curvature functions, providing a clear connection between the original curve and its mate.
To illustrate the practical application of our theoretical results, we provide detailed ex-
amples of Bertrand curve pairs in R4

1. These examples include the explicit construction of
the Frenet frames and the computation of the associated curvature functions, showcasing
the effectiveness of our methodology.
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1. Introduction

Curve analysis is a fundamental and fascinating topic in classical differential
geometry, with applications spanning various fields such as physics, engineering,
and biology. Curves, as geometric objects, play a significant role in understanding
the intrinsic properties of spaces, and their study has led to the development of
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numerous mathematical tools and frameworks. Among the many types of curves,
curve pairs—defined as curves that are mutually dependent and share common
geometric characteristics—have garnered considerable attention. Examples of
such curve pairs include the Bertrand curve, the quaternionic-Bertrand curve, the
involute-evolute curve, the Mannheim curve, helices, slant helices, and rectifying
curves [1, 2, 3]. These curve pairs are not only of theoretical interest but also
have practical applications in areas such as robotics, computer graphics, and the
modeling of physical systems.

The concept of Bertrand curves traces its origins to the work of the French
mathematician B. Saint-Venant [4], who posed a problem in differential geometry
that led to the discovery of these curves. In 1850, Joseph Bertrand [5] provided
a comprehensive investigation into this problem, leading to the formal definition
of Bertrand curves. Two curves are said to be Bertrand curves if they share a
common principal normal vector at every corresponding point. The first curve is
referred to as the Bertrand curve, while the second curve is known as its mate
curve. The Bertrand curve is also sometimes called the conjugate curve [6],
and its study has found applications in classical differential geometry, differential
equations, physics, and biology [7, 8]. The geometric properties of Bertrand
curves, such as their curvature and torsion, have been extensively studied, and
their generalizations to various spaces have led to new insights in differential
geometry.

The study of Bertrand curves was significantly advanced by L. R. Pears
[9], who extended the concept from Euclidean 3-space (E3) to Riemannian n-
space, providing generalized results about these curves. This extension opened
the door for further exploration of Bertrand curves in higher-dimensional spaces
and more complex geometric settings. Matsuda and Yorozu [10] introduced a
novel description of the Bertrand curve, known as the (1, 3)-Bertrand curve,
and conducted an exhaustive analysis of its properties. Their work laid the
foundation for subsequent studies on these curves, which have been further ex-
plored by various scholars [11, 12, 13, 14, 15, 16, 17]. For instance, Nolasco and
Pacheco [18] demonstrated a correlation between planar curves and null curves
in E3

1, while Çöken and Çiftçi [12] defined pseudo-spherical lightlike curves from
null Bertrand curves. Additional findings on Bertrand curves can be found in
[19, 20, 21, 22, 23, 24, 25, 26], which explore their properties in various contexts,
including Minkowski space-time.

In recent years, the study of Bertrand curves has been extended to Minkowski
space-time, a pseudo-Riemannian manifold that plays a crucial role in the theory
of relativity. Several scholars [13, 14, 15] have engaged in discussions on the
Bertrand curve and its partner curve within the framework of Minkowski space-
time, leading to new insights into their geometric properties. These studies have
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highlighted the importance of understanding the curvature functions and the
relationships between the original curve and its mate curve in higher-dimensional
spaces. Furthermore, the development of new Frenet frames and the exploration
of their applications have provided powerful tools for analyzing Bertrand curves
in these settings [27].

This study employs an innovative methodology to examine Bertrand curves in
a four-dimensional Minkowski space (R4

1), focusing on their geometric properties
and the relationships between their curvature functions. By introducing a new
Frenet frame specifically tailored for analyzing Bertrand curves in the (1, 3)-
normal plane, we derive significant relationships between the curvature functions
κ1, κ2, and κ3. Our analysis provides new formulas and explicit conditions for
these curvatures, offering a deeper understanding of their geometric properties in
R4
1. We investigate four distinct cases of Bertrand curves, each characterized by

specific conditions on the curvature functions, and derive explicit solutions and
relationships for each case. Additionally, we establish the existence of a Bertrand
mate curve ζ∗ for a given Bertrand curve ζ and derive the parameter λ that
defines the mate curve. This parameter is expressed in terms of the curvature
functions, providing a clear connection between the original curve and its mate.

To illustrate the practical application of our theoretical results, we provide
detailed examples of Bertrand curve pairs in R4

1. These examples include the
explicit construction of the Frenet frames and the computation of the associ-
ated curvature functions, showcasing the effectiveness of our methodology. The
findings of this study not only enhance the theoretical foundation of Bertrand
curves in Minkowski space but also provide a framework for further exploration
in differential geometry and related fields. Future research directions include the
extension of this framework to higher-dimensional Minkowski spaces, the appli-
cation of these results to physical models, and the development of computational
tools for the automated analysis of Bertrand curves and their mate curves.

2. Preliminaries

R4
1 is basically a 4-dimensional Euclidean space, together with an indefinite

flat metric g with the signature (−,+,+,+). We define the bilinear metric as
follows:

g(L,M) = −l1m1 + l2m2 + l3m3 + l4m4.

For any two vectors L = {l1, l2, l3, l4} and M{m1,m2,m3,m4}. Recall a vector
u ∈ R4

1 \ {0} is said to be spacelike if g(u, u) > 0, timelike if g(u, u) < 0 or u = 0,
and null (lightlike) if g(u, u) = 0 and u ̸= 0. We can take the norm of any vector,
say u ̸= 0, as ||u|| =

√
|g(u, u)| in R4

1.
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A curve ζ : I ⊂ R 7→ R4
1 is considered to be spacelike if for ζ ′(s) ̸= 0

and ⟨ ζ ′(s), ζ ′(s) ⟩ > 0 and timelike if ⟨ ζ ′(s), ζ ′(s) ⟩ < 0 and null(lightlike) if
⟨ ζ ′(s), ζ ′(s) ⟩ = 0 for all s ∈ R according to B O’Neill [22].

Consider a regular curve ζ : I ⊂ R 7→ R4
1 with s as an arc length parameter

on an open interval under the Frenet frame {T,N,B1, B2}, where T is a tangent
vector, N is a principal normal vector, and B1, B2 are first and second binormal
vectors that coincide with the standard orientation such that T ∧ N ∧ B1 ∧ B2.
In R4

1 K. Ilarslan [19] introduced a Frenet serret formula for curves in R4
1 as:

T ′ = ϵ2k1N,

N ′ = −ϵ1k1T + ϵ3k2B1,

B1
′ = −ϵ2k2N − ϵ1ϵ2ϵ3k3B2,

B2
′ = −ϵ3k3B1.

(1)

Here κ1, κ2 and κ3 represents non-vanishing curvatures functions. Correspond-
ingly, the following conditions hold:

g(T, T ) = ϵ1 = ±1, g(N,N) = ϵ2 = ±1, g(B1, B1) = ϵ3 = ±1, g(B2B2) = ϵ4 = ±1,

also

ϵ1ϵ2ϵ3ϵ4 = −1.

More precisely, the following requirements are satisfied:

g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(N,B2) = g(B1, B2) = 0.

A new Frenet frame is given by:
T ′ = κ1N,

N ′ = −κ1T + κ2B1,

B′
1 = κ3N + κ2B2,

B′
2 = κ3B1.

(2)

Since

g(T, T ) = g(B1, B1) = 1, g(N,N) = g(B2, B2) = 0,

g(T,N) = 0, when κ2 = 0 and g(T,B2) = g(N,B1) = g(T,B1) = g(B1, B2) = 0, g(N,B2) = −1.
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3. Bertrand Curves in 4-Dimensional Minkowski Space with a
New Frenet Frame

The Bertrand curve in Minkowski 4-space (R4
1) using new Frenet frame is

examined in this section. The following definition will give you a good idea of
what the Bertrand and the Bertrand mate curve are in R4

1.
Definition 3.1. Two curves ζ : I ⊂ R 7→ R4

1 and ζ∗ : I∗ ⊂ R 7→ R4
1

are considered a Bertrand curve and its mate curve if and only if ∃ a bijection
φ : ζ 7→ ζ∗ with a common principle normal vectors at corresponding points of ζ
and there exist λ such that

T + λN = T ∗,

and T ∗ is a tangent vector of ζ∗.
Suppose ζ : I ⊂ R 7→ R4

1 as a Bertrand curve with non-vanishing curvatures
and Frenet frame {T (s), N(s), B1(s), B2(s)} in (1, 3)-normal plane. Then, we can
write the Bertrand mate curve ζ∗ : I∗ = (a, b) ⊂ R 7→ R4

1 with the Frenet frame
{T ∗(s), N∗(s), B1

∗(s), B2
∗(s)} in the (1, 3)-normal plan as follows:

ζ∗(s∗) = ζ(s) + a(s)N(s) + b(s)B2(s),

∀s∗ ∈ I∗ and a(s), b(s) are smooth functions.
Theorem 3.1. Consider ζ : I ⊂ R 7→ R4

1 is a Bertrand curve in the
(1, 3)-normal plan, with the Frenet frame {T,N,B1, B2} and non-vanishing cur-
vature functions. Then, using the Bertrand-mate curve ζ∗ : I∗ ⊂ R 7→ R4

1, we
obtain the following results in the (1, 3)-normal plane under the Frenet frame
{T ∗(s), N∗(s), B1

∗(s), B2
∗(s)} as follows:

(i) ak2 + bk3 ̸= 0, (ii) 1− ak1 = h(ak2 + bk3),

(iii) µk2 = hk1 + k3, (iv) hµk1 − (µ+ σ)k2 − k3 = 0,

where a, b, h ∈ R and µ, σ are smooth functions.
Proof. Let ζ : I ⊂ R 7→ R4

1 is a Bertrand curve with non-vanishing curvature
functions in the (1, 3)-normal plane, with the arc length parameter s. Then in
(1, 3)-normal plan ζ∗ can be expressed as:

ζ∗(s∗) = ζ∗(f(s)) = β(s) + a(s)N(s) + b(s)B2(s). (3)

By taking derivative of equation (3) by s using equation (2), we get

T ∗f ′ = (1− ak1)T (s) + a
′
(s)N(s) + b

′
(s)B2(s) + (ak2 + bk3)B1(s). (4)

By multiplying with N and B2 apiece, we obtain a
′
= 0 and b

′
= 0.

Hence equation (4) gets the form

f
′
T ∗ = (1− ak1)T (s) + (a(s)k2 + b(s)k3)B1(s). (5)
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Denoting

δ =
(1− ak1)

f ′ and γ =
(ak2 + bk3)

f ′ . (6)

We obtain

T ∗ = δT (s) + γB1(s). (7)

Differentiating (7) with respect to s by using Frenet formula (2)

ϵ2f
′k∗1N

∗ = δ′T (s) + (δk1 + γk3)N(s) + γ′B1(s) + γk2B2(s). (8)

Multiplying by T and B1 apiece, we acquire

δ′ = 0, γ′ = 0. (9)

Using equation (6), we get

(1− ak1)γ = δ(ak2 + bk3). (10)

Assume γ = 0, so from (7), T ∗ = δT . Hence

T ∗ = ±T. (11)

Differentiating by s using equation (2), we get

f ′k∗1N
∗ = ±k1N. (12)

Following equation (12), we see that N is linearly dependent on N∗, which leads
to a contradiction. Hence, γ ̸= 0. From equation (6), we obtain the solution (i)
considering γ ̸= 0.

(ak2 + bk3) ̸= 0. (13)

From (10), we get the result (ii)

(1− ak1) = h(ak2 + bk3), (14)

where h = δ
γ for γ ̸= 0.

Multiplying (5) by itself, we get

(f
′
)2 = (1− ak1)

2 + (ak2 + bk3)
2. (15)

Using equation (14) in (15), we get

(f
′
)2 = (ak2 + bk3)

2(h2 + 1). (16)
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Using (9) in (8), we get

ϵ2f
′k∗1N

∗ = (δk1 + γk3)N(s) + γk2B2(s). (17)

Multiplying (17) by itself, we obtain

ϵ2(f
′)2(k∗1)

2 = −2(γk2)(δk1 + γk3). (18)

Substituting (6) in (18), we obtain

(f ′)2(k∗1)
2 = −2k2

(ak2 + bk3)
2

(f ′)2
[hk1 + k3]. (19)

Using (16) in (19), we get

(f ′)2(k∗1)
2 =

−2k2ϵ2
h2 + 1

[hk1 + k3]. (20)

If we denote

λ1 =
δk1 + γk3

f ′k∗1
=

(ak2 + bk3)

(f ′)2k∗1
[hk1 + k3], (21)

λ2 =
γk2
f ′k∗1

=
(ak2 + bk3)

(f ′)2k∗1
[k2], (22)

we get
N∗ = λ1N(s) + λ2B2(s). (23)

Differentiating (23) w.r.t s using Frenet frame (2), we get

f ′k∗1T
∗ + f ′k∗2B

∗
1 = λ

′
1N(s) + λ

′
2B2(s)− λ1k1T (s) + (λ1k2 + λ2k3)B1(s). (24)

Taking the dot product of N and B2 with the equation (24), individually, we get

λ
′
1 = 0, λ

′
2 = 0. (25)

Dividing equation (21) by (22), since λ2 ̸= 0, we have result (iii)

µk2 = hk1 + k3, (26)

where µ = λ1
λ2
.

Using equation (25) in (24), we get

f ′k∗2B
∗
1 = f ′k∗1T

∗ + (λ2k1 − λ1k1)T (s) + (λ1k2 + λ2k3)B1(s). (27)

Using equation (5) in (27), we have the relation

f ′k∗2B
∗
1 = (hk∗1(ak2+bk3)−λ1k1)T (s)+((ak2+bk3)k

∗
1+λ1k2+λ2k3)B1(s). (28)



61

From this, we may suppose like this

(ak2 + bk3)k
∗
1 + λ1k2 + λ2k3

hk∗1(ak2 + bk3)− λ1k1
= − δ

γ
= −h. (29)

(ak2 + bk3)k
∗
1[1 + h2] = hλ1k1 − λ1k2 − λ2k3. (30)

Taking square on both side

(ak2 + bk3)
2(k∗1)

2[1 + h2]2 = [hλ1k1 − λ1k2 − λ2k3]
2. (31)

Substituting value of (k∗1)
2 from equation (19), we get

−2k2ϵ2[hk1 + k3] = [hλ1k1 − λ1k2 − λ2k3]
2. (32)

Using equation (26), we get

−2(k2)
2ϵ2µ = λ2

2[hµk1 − µk2 − k3]
2. (33)

Suppose λ2
3 = −2ϵ2µ and ω = hµk1 − µk2 − k3, using in above equation

λ2
3(k2)

2 = λ2
2ω

2. (34)

Taking square root on both side, we get

ω =
λ3

λ2
k2. (35)

Finally, we get the result (iv)

hµk1 − (µ+ σ)k2 − k3 = 0. (36)

Proposition 3.2. Under the same assumptions as in theorem 3.1, suppose ζ∗ be
the Bertrand mate curve with non-vanishing curvatures. After that, we obtain
the four possible cases listed below:
For the values of k1, k2 and k3

ak1 + hak2 + hbk3 = 0, (37)

hk1 + k2 + k3 = 0, (38)

where µ = −1. Multiplying equation (38) by −ha and adding in equation (37),
we get the relation

a(1− h2)k1 + h(b− a)k3 = 1. (39)
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Case 1: If a = b and h2 − 1 ̸= 0, then

k1 =
1

a(1− h2)
. (40)

Using equation (38), we get

k3 = − h

a(1− h2)
− k2. (41)

Multiplying equation (38) by −hb and adding in equation (37), we get the relation

(a− h2b)k1 + h(a− b)k2 = 1. (42)

Case 2: For a ̸= b and h2 ̸= 0, then

k2 =
1

h(a− b)
− a− h2b

h(a− b)k1
, (43)

also

k3 =
(1− h2)a

h(a− b)
k1 −

1

h(a− b)
. (44)

Case 3: For a ̸= b and 1− h2 = 0, then

k3 =
−h

a− b
, (45)

k2 = h(
1

a− b
− k1). (46)

Case 4: If k1, k2, k3 are constants and det(A) ̸= 0, then we have the following
solution

k1 =

∣∣∣∣∣∣
1 h hb
0 −µ 1
0 −µ− σ −1

∣∣∣∣∣∣
det(A)

=
2µ+ σ

det(A)
, (47)

k2 =

∣∣∣∣∣∣
a 1 hb
h 0 1
hµ 0 −1

∣∣∣∣∣∣
det(A)

=
h(1 + µ)

det(A)
, (48)

k3 =

∣∣∣∣∣∣
a h 1
h −µ 0
hµ −µ− σ 0

∣∣∣∣∣∣
det(A)

=
h(µ2 − µ− σ)

det(A)
. (49)
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Theorem 3.3. Suppose ζ : I ⊂ R 7→ R4
1 be a Bertrand curve under the Frenet

frame {T,N,B1, B2} with κ1, κ2, and κ3 ̸= 0. We obtain a Bertrand mate curve
ζ∗ as ζ∗ = ζ + λN , where λ in R4

1 is given as follows:

λ = ±
√

1

2
(u±

√
u2 + 4v).

Proof. Since ζ is a Bertrand curve, this implies that T (s) = dζ(s)/ds. Using
Frenet frame (2), we obtain

T ′ = k1N(s). (50)

If we take the derivative by s, we obtain

T ′′ = k1(−k1T (s) + k2B1(s)) = −k21T (s) + k1k2B1(s). (51)

Using equation (2), we differentiate by s and obtain

T ′′′ = −k21(k1N(s)) + k1k2(k3N(s) + k2B2(s)) = (−k21 + k2k3)T
′(s) + k1k

2
2B2(s).

(52)
Again differentiating by s, we obtain

T ′′′′ = (−k21 + k2k3)T
′′(s) + k1k

2
2k3B1(s). (53)

Using equation (51), we get

T ′′′′ = (−k21 + k2k3)T
′′(s) + k2k3(T

′′(s) + k21T (s)). (54)

This implies that

T ′′′′ = (2k2k3 − k21)T
′′(s) + k21k2k3T (s). (55)

T 4(s)− uT 2(s)− vT (s) = 0. (56)

Hence the C.F will be

λ4 − uλ2 − v = 0. (57)

λ2 =
1

2
(u±

√
u2 + 4v). (58)

λ = ±
√

1

2
(u±

√
u2 + 4v). (59)

Hence λ is obtained for Bertrand curve in R4
1.
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Example 1. Suppose that a Bertrand curve Γ(s) : I ⊂ R 7→ R4
1 with

the equation:
Γ(s) = (α sin(2s), β cos(2s), γ sin(2s), 2ηs),

where α, β, γ and η are constants. The non-vanishing curvatures for the Bertrand
curve by using Frenet frame-(2) are κ1 = −4, κ2 = −3, κ3 = 2 and the orthonor-
mal vectors are follows:

T (s) = 2(α cos(2s),−β sin(2s), γ cos(2s), η),

N(s) = (α sin(2s), β cos(2s), γ sin(2s), 0),

B1(s) = 2(α cos(2s),−β sin(2s), γ cos(2s), (43)η),

B2(s) = 2(α sin(2s), β cos(2s), γ sin(2s), 0).

If we choose ϵ1 = −1, ϵ2 = ϵ3 = ϵ4 = 1, we obtain its mate curve Γ∗ : I∗ ⊂ R 7→
R4
1 as follows:

Γ∗ = 2(α sin(2s), β cos(2s), γ sin(2s), (η +
1

3
)s).

By using Frenet frame-(1) and doing straight calculation, we obtain
T ∗(s) = 2(2α cos(2s),−2β sin(2s), 2γ cos(2s), η),

N∗(s) = (α sin(2s), β cos(2s), γ sin(2s), 0),

B1
∗(s) = −2(α cos(2s),−β sin(2s), γ cos(2s), ( 8

15)η),

B2
∗(s) = (α sin(2s), β cos(2s), γ sin(2s), 0).

Further, the non-vanishing curvature functions are listed below for Γ∗ .

κ1
∗ = −8, κ2

∗ = 15, and κ3
∗ = 19.

As N(s) = N∗(s), hence we consider Γ∗ and Γ as Bertrand curves.
Example 2. Consider another Bertrand curve with the equation Φ(s) =
1
2 (α cosh(2s), β sinh(2s), 2γs, 2ηs). Whose Bertrand mate curve for ϵ1 = −1, ϵ2 =
ϵ3 = ϵ4 = 1 is denoted by Φ∗ be given as:

Φ∗(s) = ((
3

2
)α cosh(2s), (

3

2
)β sinh(2s), (s− 1

2
)γ, (s− 1

2
)η),

where α, β, γ and η are arbitrary constants. Using Frenet frame-(1), we obtain
orthonormal vectors as follows:

T ∗(s) = (3α sinh(2s), 3β cosh(2s), γ, η),

N∗(s) = (α cosh(2s), β sinh(2s), 0, 0),

B1
∗(s) = (10α sinh(2s), 10β cosh(2s), 3γ, 3η),

B2
∗(s) = (2α cosh(2s), 2β sinh(2s), 0, 0).
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And the non-vanishing curvatures are obtain as follows:κ∗1 = 6, κ∗2 = 2, and κ∗3 =
11. Further, the curvature functions for Φ(s) obtained by using Frenet frame-(2)
as follows: κ1 = 2, κ2 = 4, and κ3 = −2.

T (s) = (α sinh(2s), β cosh(2s), γ, η),

N(s) = (α cosh(2s), β sinh(2s), 0, 0),

B1(s) = (α sinh(2s), β cosh(2s), (12)γ, (
1
2)η),

B2(s) = 2(α cosh(2s), β sinh(2s), 0, 0).

Since N∗ = N implies that Φ∗(s) and Φ(s) are Bertrand and Bertrand mate
curve.

4. Conclusion

This study has introduced a novel Frenet frame for the analysis of Bertrand
curves in 4-dimensional Minkowski space (R4

1), providing a significant advance-
ment in the geometric understanding of these curves. By applying this new frame
to the (1, 3)-normal plane, we derived explicit relationships between the curvature
functions κ1, κ2, and κ3, and established conditions under which Bertrand curves
and their mate curves exist. Our results include new formulas for the curvatures
and the parameter λ, which defines the relationship between a Bertrand curve
and its mate.

We investigated four distinct cases of Bertrand curves, each characterized by
specific conditions on the curvature functions, and provided explicit solutions
for these cases. The examples presented in this work demonstrate the practi-
cal application of our theoretical findings, showcasing the construction of Frenet
frames and the computation of curvature functions for specific curve pairs in R4

1.
These results not only enhance the theoretical foundation of Bertrand curves in
Minkowski space but also provide a framework for further exploration in differ-
ential geometry and related fields.

The findings of this study open several avenues for future research. One
direction is the extension of this framework to higher-dimensional Minkowski
spaces or other pseudo-Riemannian manifolds. Additionally, the application of
these results to physical models, such as spacetime structures in general relativ-
ity or kinematic modeling in engineering, could yield valuable insights. Further
investigation into the geometric properties of Bertrand curves, such as their be-
havior under deformations or their relationship with other special curves (e.g.,
helices, slant helices, or rectifying curves), could also be pursued. Finally, the
development of computational tools to automate the construction and analysis
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of Bertrand curves and their mate curves would facilitate their application in
practical scenarios.
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