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Necessary Conditions for a Minimum in Varia-
tional Problems with Delay in the Presence of De-
generacies

Misir J. Mardanov, Telman K. Melikov, Gulnar V. Hajiyeva

Abstract. This article explores minimum of an extremal in the variational problem with
delay under the degeneracy of the Weierstrass condition. Here for study the minimality
of extremal, variations of the Weierstrass type are used in two forms: in the form of
variations on the right with respect to the given point, and in the form of variations
on the left with respect to the same point. Further, using these variations, formulas for
the increments of the functional are obtained. The exploring of the minimality of the
extremal with the help of these formulas is conducted under the assumption that the
Weierstrass condition degenerates. As a result, considering different forms of degenera-
tions (degeneracy of the Weieristrass condition at a single point and at points of a certain
interval), we obtain the necessary conditions of the inequality type and the equality type
for a strong and weak local minimum. A specific example is given to demonstrate the
effectiveness of the results obtained in this article.
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1. Introduction and problem statement

In the present paper, we consider the following vector problem of variation
with delayed argument:

S(x(·)) =
∫ t1

t0

L(t, x(t), x(t− h), ẋ(t), ẋ(t− h))dt → min
x(·)

, (1)

x(t) = φ(t), t ∈ [t0 − h, t0], x(t1) = x1, x1 ∈ Rn, (2)
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here Rn is n-dimensional space, t0, t1 ∈ (−∞,+∞), x0 and x1 are the given
points h = const > 0,t1 − t0 > h, functions L (t, x, y, ẋ, ẏ) : [t0, t1] × Rn ×
Rn × Rn×Rn → R := (−∞,+∞) and φ(t) ∈ C1 ([t0 − h, t0] , R

n) are the given
continuously differentiable functions with respect to all their arguments and for
each (t, x, y, ẋ, ẏ) ∈ (t1,+∞)×Rn×Rn×Rn×Rn there is equality L(t, x, y, ẋ, ẏ) =
0,where y = y (t) = x (t− h) , ẏ := ẏ (t) = ẋ (t− h) , t ∈ I := [t0, t1],

moreover x(t) ∈ KC1
(
Î , Rn

)
, where Î : = [t0 − h, t1] and KC1

(
Î , Rn

)
is a

class of piecewise-smooth function .

We call the functions x(·) ∈ KC1
(
Î , Rn

)
satisfying boundary conditions (2),

an admissible function.

Let us introduce the following notation to study the problem (1), (2) below
for compact and convenient notation along with the admissible function x(·) :

L̄(τ) := L(τ, x̄(τ), ȳ(τ), ˙̄x(τ), ˙̄y(τ)) ,

L̄(τ, ξ; ˙̄x(·)) := L(τ, x̄(τ), ȳ(τ), ˙̄x(τ) + ξ, ˙̄y(τ)), L̄(τ, ξ; ˙̄y(·)) :=

= L(τ, x̄(τ), ȳ(τ), ˙̄x(τ), ˙̄y(τ) + ξ), (3)

(the notations are defined similarly L̄x(τ), L̄y(τ), L̄ẋ(τ),L̄ẏ(τ) L̄x(τ, ξ; ˙̄x(·)) and
L̄y(τ, ξ; ˙̄y(·) )) , where τ ∈ {t, t+ h}, τ ∈ I,ξ ∈ Rn;

E
(
L̄
)
(τ, ξ; ˙̄x(·)) := L̄(τ, ξ; ˙̄x(t))− L̄(τ)−L̄

T
ẋ (τ)ξ, (4)

E
(
L̄
)
(ν, ξ; ˙̄y(·)) := L̄(ν, ξ; ˙̄y(·))− L̄(ν)− L̄T

ẏ (ν)ξ;

Qk

(
L̄
)
(τ, λ, ξ; ˙̄x(·)) := λkE

(
L̄
)
(τ, ξ; ˙̄x(·)) +

(
1− λk

)
E
(
L̄
)(

τ,
λ

λ− 1
ξ; ˙̄x(·)

)
,

Qk

(
L̄
)
(ν, λ, ξ; ˙̄y(·)) := λkE

(
L̄
)
(ν, ξ; ˙̄y(·)) +

(
1− λk

)
E
(
L̄
)(

ν,
λ

λ− 1
ξ; ˙̄y(·)

)
,

(5)
where τ, ν ∈ {t, t+ h}, ξ ∈ Rn,λ ∈ (0, 1), k = 1, 2;

M
(
L̄x

)
(τ, λ, ξ; ˙̄x (·)) : = λ

[
L̄T
x (τ, ξ; ˙̄x (·))− L̄T

x (τ)
]
ξ +

+(1− λ)

[
L̄T
x

(
τ,

λ

λ− 1
ξ; ˙̄x(·)

)
− L̄T

x (τ)

]
ξ, (6)

M
(
L̄y

)
(ν, λ, ξ; ˙̄y(·)) : = λ

[
L̄T
y (ν, ξ; ˙̄y(·))− L̄T

y (ν)
]
ξ +

+(1− λ)

[
L̄T
y

(
ν,

λ

λ− 1
ξ; ˙̄y(·)

)
− L̄T

y (ν)

]
ξ,
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where τ, ν ∈ {t, t+ h}, ξ ∈ Rn,λ ∈ (0, 1).

Let us recall the concepts that were introduced, for example in [23, 26]. The
admissible function x(·) is called a strong (weak) local minimum in the problem

(1), (2), if there exists such a number δ̄ > 0
(
δ̂ > 0

)
that the inequality S(x(·)) ≥

S(x̄(·)) is fulfilled for all admissible functions x(·) for which

∥x(·)− x̄(·)∥C(Î,Rn) ≤ δ̄
(
max

{
∥x(·)− x̄(·)∥C(Î,Rn), ∥ ˙̄x(·)− ˙̄x(·)∥L∞(Î,Rn)

}
≤ δ̂

)
.

In this case, we say that the admissible function x̄(·) affords a strong (weak)

local minimum in the problem (1), (2) with δ̄
(
δ̂
)
neighbourhood. Obviously,

any strong local minimum at the same time is weak as well, but the opposite is
not always true [24].

For the first time in 1970, Kamensky [13] investigated variational problems
with delay and obtained an analogue of the Euler equation. It is easy to see that
boundary condition (2) is more characteristic for the variational problem with
delay compared to the boundary condition from [13]. Later, only in recent years
the variational problem with delay have been studied in the works [11,12,26].

Let us also recall some information about the necessary conditions for the
minimality obtained in the works [11,26] . Namely:

(a) if the admissible function x̄(·) is a weak local minimum in the problem
(1), (2), then along the function x̄(·), the first variation of the problem (1), (2)
is equal to zero, i.e. taking into account (3), the following equality holds [11]:

δS(δx(·); x̄(·)) =

=

∫ t1

t0

{[
L̄T
x (t) + L̄T

y (t+ h)
]
δx(t) +

[
L̄T
ẋ (t) + L̄T

ẏ (t+ h)
]
δẋ(t)

}
dt = 0, (7)

∀δx(t) ∈ KC1
(
Î , Rn

)
, and δx (t) = 0, with t ∈ [t0 − h, t0] ∪ {t1};

(b) if the admissible function x̄(·) is a weak local minimum in the problem
(1), (2) and the function ẍ(·) is continuous at the points in the set Ĩ ⊂ I where
I\Ĩ− is a finite set, moreover, the functions L (·) , φ (·) are twice continuously
differentiable with respect to the set of variables, then the function x̄(·) is a
solution of the Euler equation, i.e., the following equalities hold [11]:

d

dt
L̄ẋ (t) = L̄x (t) , t ∈ Ĩ ∩ (t1 − h, t1], (8)

d

dt
[L̄ẋ (t) + L̄ẏ (t+ h)] = L̄x (t) + L̄y (t+ h) , t ∈ Ĩ ∩ [t0, t1 − h];



72 Misir J. Mardanov, Telman K. Melikov, Gulnar V. Hajiyeva

(c) if the admissible function x̄(·) is strong local minimum in the problem (1),
(2), then the analogue of the Weierstrass condition is fulfilled along it, i.e., for all
ξ ∈ Rn the following inequalities are valid [26]:

E
(
L̄
)
(t, ξ; ˙̄x(·)) ≥ 0,∀t ∈ I∗ ∩ [t1 − h, t1],

E
(
L̄
)
(t, ξ; ˙̄x(·)) + E

(
L̄
)
(t+ h, ξ; ˙̄y(·)) ≥ 0, ∀t ∈ I∗ ∩ [t0, t1 − h], (9)

here I∗ ⊆ [t0, t1] is the set of points where the functions ẋ(·) is continuous, in
addition the functions E

(
L̄
)
(·; ˙̄x (·)) and E

(
L̄
)
(·; ˙̄y (·)) are defined by (4);

(d) if the admissible function x̄(·) is weak local minimum in the problem (1)
(2), then there exists a number δ > 0 such that for every ξ ∈ Bδ(0) the inequality
(9) holds, where symbol Bδ(0) is a ball of the radius δ centered at the point
0 ∈ Rn [26].

Remark 1.1. Following [4, 24], the minimum conditions (9) are valid on the
right and on the left at discontinuity points of the function ˙̄x(·).

We call a solution of the problem (1), (2) as an extremal in the problem (1),
(2), if it satisfies equation (7).

It should be noted that the application of the Weierstrass condition (9) as
a necessary condition for minimum is more effective if at each point t ∈ I ,
the inequality (9) turns into equality only at a single point ξ = 0. However, it
may happen that at least at one point θ ∈ I inequality (9) turns into equality at
several points ξ ∈ Rn. In this case, as a rule, it is usually said that the Weierstrass
conditions (9) degenerates at the point θ.

It is evident that the problem (1), (2) in the terms of optimal control theory
takes the following form:

S (x (·) , xn+1 (·)) = xn+1 (t1) → min
u(·)

, (10)

{
ẋ (t) = u (t) , u (t) ∈ KC

(
Î , Rn

)
,

ẋn+1 (t) = L (t, x (t) , x (t− h) , u (t) , u (t− h)) , t ∈ (t0, t1] ,
(11)

x (t) = φ (t) , u (t) = φ̇ (t) , t ∈ [t0 − h, t0] , x (t1) = x1, xn+1 (t0) = 0, (12)

where KC
(
Î , Rn

)
- the class of piece wise continuous functions.

As is known, degenerate cases in optimal control theory are studied in terms
of singular controls. For the optimality of singular controls in control prob-
lems described by ordinary differential equations, several important results have
been obtained (see, for example, [1,2,5,6,8,14-16,25,30,31]). Subsequently, some
of these results have been significantly generalized for control problems with de-
lays only in the forms, namely, for the problem with delays in phase variables
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(see, for example, [3,19, 27-30]) and for problems with delays in controls (see for
example [17,18,21]).

It should be noted that, in the problems of the form (10) - (12) the optimality
of singular controls has not been studied, since in the problem (10) - (12) the
phase variable and also the control variable depend on the delay. Therefore,
considering the above, it can be argued that the study of the problem (10)-(12)
i.e. (1), (2) in the presence of degeneracy is actual.

The main aim of our paper is to minimize the extremal in the problem (1), (2)
under the degeneracy of the Weierstrass condition (9). Developing the method
developed in [24], we obtain the necessary equality-type and inequality-type con-
ditions for a strong as well as a weak local minimum. The derivation of these
minimum conditions is a significant generalization of the corresponding state-
ments in [24].

The structure of the present paper is outlined by the following scheme. In the
second section of the article, special variations are introduced for the extremal
of problem (1), (2) (see (13) and (15)), and lemmas are proved (see Lemmas
(2.1) and (14)). In the third and fourth sections, using variation (13) and (15),
formulas for the increment of the functional (1) are obtained, namely, Lemmas
3.1, 3.2, 4.1 and 4.2 are proved. In the fifth and sixth sections, considering the
degeneration of the Weierstrass condition (9), based on the increment formulas
obtained in the sections 3 and 4, theorems are proved (see Theorems 5.2, 6.1
and 6.2) on the necessary conditions for a minimum. Finally, in the seventh
section, a specific example is given that shows the effectiveness of the statements
of Theorem 5.1 and the prospects for further development and generalization of
this work are noted.

2. Special variations of the extremal of the problem (1),(2) and
the lemma.

Let an admissible function x̄(·) be an extremal of the problem (1), (2) and
ϑ := (θ, λ, ξ) ∈ [t0, t1 − h]× (0, 1)×Rn\{0} -be an arbitrary fixed point.

Following [24], we take into consideration the following special variations of
the extremal x̄(·):

1. variation introduced on the right with respect to the point θ ∈ [t0, t1 − h) :

x(+)(t;ϑ, ε) = x̄(t) + q(+)(t;ϑ, ε), t ∈ Î , (13)
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where the function q(+)(t;ϑ, ε) is defined as:

q(+)(t;ϑ, ε) =


(t− θ)ξ, t ∈ [θ, θ + λε),
λ

λ−1(t− θ − ε)ξ, t ∈ [θ + λε, θ + ε),

0, t ∈ Î\[θ, θ + ε),

(14)

here λ ∈ (0, 1), ξ ∈ Rn\{0}, ϑ = (θ, λ, ξ) and ε ∈ (0, ε), ε = min{ h, t1− θ−h};
(ii) variation introduced on the left with respect to the point θ ∈ (t0, t1 − h] :

x(−)(t;ϑ, ε) = x̄(t) + q(−)(t;ϑ, ε), t ∈ Î , (15)

where the function q(−)(t;ϑ, ε) is defined as:

q(−)(t;ϑ, ε) =


(t− θ)ξ, t ∈ (θ − λε, θ],
λ

λ−1(t− θ + ε)ξ, t ∈ (θ − ε, θ − λε],

0, t ∈ Î\(θ − ε, θ],

(16)

here λ ∈ (0, 1), ξ ∈ Rn\{0}, ϑ = (θ, λ, ξ) and ε̃ = min{h, θ − t0}.
It is obvious that for any ε ∈ (0, ε̂), where ε̂ = min{ ε̄, ε̃}, functions

q(+)(· ;ϑ, ε) and q(−)(·ϑ, ε) are elements of the space KC1
(
Î , Rn

)
and their

derivatives q̇(+)( · ;ϑ, ε) and q̇(−)(·;ϑ, ε) are calculated using the following for-
mulas:

q̇(+)(t;ϑ, ε) =


ξ, t ∈ [θ, θ + λε],
λ

λ−1ξ, t ∈ [θ + λε, θ + ε ],

0, t ∈ Î\(θ, θ + ε),

(17)

q̇(−)(t;ϑ, ε) =


ξ, t ∈ [θ − λε, θ],
λ

λ−1ξ, t ∈ [θ − ξ, θ − λε],

0, t ∈ Î\(θ − ε, θ).

(18)

As seen, the derivative q̇(+)( ·;ϑ, ε) is calculated both on the right and on the
left at the points θ, θ + λε and θ + ε and the derivative q̇(−)(t;ϑ, ε) is calculated
on both the right and on the left at the points θ − ε, θ − λε, and θ.

Lemma 2.1. Let an admissible function x̄(·) be an extremal of the problem
(1), (2). Then for each ϑ = (θ, λ, ξ) ∈ [t0, t1 − h) × (0, 1) × Rn\{0} and for all
ε ∈ (0, ε̄) the equality holds:

δS(q(+)(·;ϑ, ε); x̄(·)) =

=

∫ θ+λε

θ

[(
L̄T
x (t) + L̄T

y (t+ h)
)
(t− θ) + L̄T

ẋ (t) + L̄T
ẏ (t+ h)

]
ξdt+
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+
λ

λ− 1

θ+ε∫
θ+λε

[(
L̄T
x (t) + L̄T

y (t+ h)
)
(t− θ − ε) + L̄T

ẋ (t) + L̄T
ẏ (t+ h)

]
ξdt = 0,

(19)
where q(+)( · ;ϑ, ε) is determined by (14).

Proof of Lemma 2.1 follows (7) taking into account δ x( · ) = q(+)( · ;ϑ, ε) and
δ ẋ( · ) = q̇(+)( · ;ϑ, ε), where q(+)( · ;ϑ, ε) and q̇(+)( · ;ϑ, ε) are determined by
(14) and (17), respectively.

Lemma 2.2. Let an admissible function x̄(·) be an extremal of the problem
(1), (2). Then for each ϑ = (θ, λ, ξ) ∈ (t0, t1 − h] × (0, 1) × Rn\{0} and for all
ε ∈ (0, ε̃) the equality holds:

δS(q(−)(·;ϑ, ε); x̄(·)) =

=

∫ θ

θ−λε

[(
L̄T
x (t) + L̄T

y (t+ h)
)
(t− θ) + L̄T

ẋ (t) + L̄T
ẏ (t+ h)

]
ξdt+

+
λ

λ− 1

∫ θ−λε

θ−ε

[(
L̄T
x (t) + L̄T

y (t+ h)
)
(t− θ + ε) + L̄T

ẋ (t) + L̄T
ẏ (t+ h)

]
ξdt = 0,

(20)
where q(−)( · ;ϑ, ε) is determined by (16).

Proof of Lemma 2.2 follows (7) taking into account δ x( · ) = q(−)( · ;ϑ, ε) and
δ ẋ( · ) = q̇(−)( · ;ϑ, ε), where q(−)( · ;ϑ, ε) and q̇(−)(· ;ϑ, ε) are determined by (16)
and (18), respectively.

3. Formula for the increment of the functional in the problem
(1),(2) on variations (13)

Let x̄(·) be an extremal of the problem (1), (2) and suppose that the derivative
function of x (·) is continuous on the right at the points θ−h, θ, θ+h. Continuing
of the study, let’s calculate the increment:

S(x(+)( · ; ϑ, ε))− S(x̄(·)) = : ∆S(+)(q(+)( · ; ϑ, ε); x̄(·)) (21)

functional (1) in the problem (1), (2) on variations (13) up to o(ε2), where
ϑ = (θ, λ, ξ), θ ∈ [t0, t1 − h), ε ∈ (0, ε̄), the number ε̄ > 0 is defined in (14),
o(ε2)/ε2 → 0, at ε → +0.

Increment (21), considering (13), (14), (17) and Lemma 2.1 takes the following
form:

∆(+)S(q(+)(· ; ϑ, ε); x̄(·)) = ∆(+) S1(q
(+)(· ; ϑ, ε); x̄(·))+

+∆(+)S2(q
(+)(·;ϑ, ε); x̄(·))− δS(q(+)(·;ϑ, ε); x̄(·)), (22)
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here

∆(+)S1(q
(+)( · ; ϑ, ε); x̄(·)) =

∫ θ+ε

θ

[
L
(
t, x̄(t), ȳ(t), ˙̄x(t) + q̇(+)

ε (t), ˙̄y(t)
)
− L̄(t)

]
dt+

+

∫ θ+h+ε

θ+h

[
L
(
t, x̄(t), ȳ(t), ˙̄x(t), ˙̄y(t) + q̇(+)

ε (t− h)
)
− L̄(t)

]
dt, (23)

∆(+)S2(q
(+)(· ; ϑ, ε); x̄(·)) =

∫ θ+ε

θ

[
L
(
t, x̄(t) + q(+)

ε (t), ȳ(t), ˙̄x(t) + q̇(+)
ε (t), ˙̄y(t)

)
−

−L
(
t, x̄(t), ȳ(t), ˙̄x(t) + q̇(+)

ε (t), ˙̄y(t)
) ]

dt+

+

∫ θ+h+ε

θ+h

[
L
(
t, x̄(t), ȳ(t) + q(+)

ε (t− h), ˙̄x(t), ˙̄y(t) + q̇(+)
ε (t− h)

)
−

−L
(
t, x̄(t), ȳ(t), ˙̄x(t), ˙̄y(t) + q̇(+)

ε (t− h)
) ]

dt, (24)

where q
(+)
ε (·) := q(+)(·; ϑ, ε), q̇

(+)
ε (·) := q̇(+)(·; ϑ, ε), ε ∈ (0, ε̄), then

δS(q(+) (·; ϑ, ε) ; x̄ (·)) is defined by (19).
From (23) and (24), considering (14), (17) and notation (3), we obtain:

∆(+)S1(q
(+)(·; ϑ, ε); x̄(·)) =

=

θ+λε∫
θ

{[
L̄(t, ξ; ˙̄x(·))− L̄(t)

]
+

[
L̄(τ, ξ; ˙̄y(·))− L̄(τ)

]∣∣
τ=t+h

}
dt+

+

∫ θ+ε

θ+λε

{[
L̄

(
t,

λ

λ− 1
ξ; ˙̄x(·)

)
− L̄(t)

]
+

[
L̄

(
τ,

λ

λ− 1
ξ; ˙̄y(·)

)
− L̄(τ)

]∣∣∣∣
τ=t+h

}
dt,

(25)

∆(+)S2(q
(+)( · ; ϑ, ε); x̄(·)) =

∫ θ+ε

θ
{[L (t, x̄(t) + (t− θ)ξ, ȳ(t), ˙̄x(t) + ξ, ˙̄y(t)) −

−L (t, x̄(t), ȳ(t), ˙̄x(t) + ξ, ˙̄y(t))] + [L (τ, x̄(τ), ȳ(τ) + (t− θ)ξ, ˙̄x(τ), ˙̄y(τ) + ξ) −

−L (τ, x̄(τ), ȳ(τ), ˙̄x(τ), ˙̄y(τ) + ξ)]|τ=t+h

}
dt+

+

∫ θ+ε

θ+λε

{[
L

(
t, x̄(t) +

λ

λ− 1
(t− θ − ε)ξ, ȳ(t), ˙̄x(t) +

λ

λ− 1
ξ, ˙̄y(t)

)
−

−L

(
t, x̄(t), ȳ(t), ˙̄x(t) +

λ

λ− 1
ξ, ˙̄y(t)

)]
+

+

[
L

(
τ, x̄(τ), ȳ(τ) +

λ

λ− 1
(t− θ − ε)ξ, ˙̄x(τ), ˙̄y(τ) +

λ

λ− 1
ξ

)
−
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−L

(
τ, x̄(τ), ȳ(τ), ˙̄x(τ), ˙̄y(τ) +

λ

λ− 1
ξ

)]∣∣∣∣
τ=t+h

}
dt. (26)

According to the Taylor formula, formula (26) takes the following form:

∆(+)S2(q
(+)(·; ϑ, ε); x̄ (·)) =

=

∫ θ+λε

θ

{[
L̄T
x (t, ξ; ˙̄x(·)) + L̄T

y (t+ h, ξ; ˙̄y(·))
]
(t− θ)ξ + o(t− θ)

}
dt+

+

∫ θ+ε

θ+λε

{[
L̄T
x

(
t,

λ

λ− 1
ξ; ˙̄x(·)

)
+

+L̄T
y

(
t+ h,

λ

λ− 1
ξ; ˙̄y(·)

)]
ξ(t− θ − ε) + o(t− θ − ε)

}
dt =

=
1

2
λ2ε2

[
L̄T
x (θ+, ξ; ˙̄x(·)) + L̄T

y ((θ + h)+, ξ; ˙̄y(·))
]
ξ+

+
ε2λ(1− λ)

2

[
L̄T
x

(
θ+,

λ

λ− 1
ξ; ˙̄x(·)

)
+ L̄T

y

(
(θ + h)+,

λ

λ− 1
ξ; ˙̄y(·)

)]
ξ + o(ε2).

(27)
In addition, from (19) we have

δS(q(+)(·; ϑ, ε); x̄ (·)) =
∫ θ+λε

θ

[
L̄T
ẋ (t) + L̄T

ẏ (t+ h)
]
ξdt+

+
λ

λ− 1

∫ θ+ε

θ+λε

[
L̄T
ẋ (t) + L̄T

ẏ (t+ h)
]
ξdt+

1

2
λ2ε2

[
L̄T
x (θ+) + L̄T

y

(
(θ + h)+

)]
ξ+

+
1

2
ε2λ(1− λ)

[
L̄T
x (θ+) + L̄T

y

(
(θ + h)+

)]
ξ + o(ε2). (28)

When deriving (27) and (28), we considered into the assumptions about the
right continuity of the function ẋ (·) at the points θ − h, θ, θ + h.

We consider (25), (27) and (28) in (22). As a result, considering notations
(3), (4) and (6) we obtain:

∆(+)S(q(+)(·; ϑ, ε);x ) :=

∫ θ+λε

θ

[
E
(
L̄
)
(t, ξ; ˙̄x(·)) + E

(
L̄
)
(t+ h, ξ; ˙̄y(·))

]
dt+

+

∫ θ+ε

θ+λε

[
E
(
L̄
)(

t,
λ

λ− 1
ξ; ˙̄x(·)

)
+ E

(
L̄
)(

t+ h,
λ

λ− 1
ξ; ˙̄y(·)

)]
dt+

+
1

2
ξ2λ

[
M

(
L̄x

)
(θ+, λ, ξ; ˙̄x(·)) +M

(
L̄y

) (
(θ + h)+, λ, ξ; ˙̄y(·)

)]
+ o(ε2), (29)
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where functions E
(
L̄
)
(· , · ; ˙̄x(·)) and E

(
L̄
)
(· , · ; ˙̄y(·)) are determined by (4),

and functions M
(
L̄
)
(· , · ; ˙̄x(·)) and M

(
L̄
)
(· , · ; ˙̄y(·)) are determined by (6).

Thus, the following statement is proved.
Lemma 3.1. Let the functions L( · ) and f (·) be continuously differentiable

with respect to the totality of their arguments and the admissible function x̄(·) is
a solution of equation (7). In addition, let the function ẋ (·) be continuous on the
right at the points θ−h, θ and θ+h, where θ ∈ [t0, t1−h). Then, for sufficiently
small values ε > 0, the expansion (29) holds.

Based on (29), the following Lemma is proven.
Lemma 3.2. Let functions L(·), Lẋ(·) , Lẏ(·) be continuous differentiable

with respect to the totality of their arguments and the function φ (·)− twice
continuously differentiable. In addition, let an admissible function x̄(·) is an
extremal of the problem (1), (2) and let it be twice continuously differentiable on
the right in the semi-neighborhoods of the points θ − h, θ and θ + h. Then for
sufficiently small values ε > 0 there is a representation of the form:

∆(+)S(q(+)(·; ϑ, ε);x(·)) = ε
[
Q1

(
L̄
)
(θ+, λ, ξ; ˙̄x(·)) +Q1((θ + h)+, λ, ξ; ˙̄y(·))

]
+

+
1

2
ε2

{
λ
[
M

(
L̄x

)
(θ+, λ, ξ; ˙̄x(·)) +M

(
L̄y

)
((θ + h)+, λ, ξ; ˙̄y(·))

]
+

+
d

dt

[
Q2

(
L̄
)
(θ+, λ, ξ; ˙̄x(·)) +Q2((θ + h)+, λ, ξ; ˙̄y(·))

]}
+ o(ε2), (30)

where Qk

(
L̄
)
( · ; ˙̄x(·)) and Qk

(
L̄
)
( · ; ˙̄y(·)) , k = 1, 2 are defined by (5) and

M
(
L̄x

)
( · ; ˙̄x(·)) and M

(
L̄y

)
( · ; ˙̄y(·)) by (6).

Proof. Using the Taylor’s formula, considering the smoothness assumption
of Lemma 3.2, we have:∫ θ+λε

θ
E
(
L̄
)
( t, ξ ; ˙̄x(·)) dt = ελE

(
L̄
)
( θ+, ξ ; ˙̄x(·))+

+
ε2λ2

2

d

dt
E
(
L̄
)
( θ+, ξ ; ˙̄x(·)) + o(ε2),∫ θ+ε

θ+λε
E
(
L̄
)(

t,
λ

λ− 1
ξ ; ˙̄x(·)

)
dt = ε(1− λ)E

(
L̄
)(

θ+,
λ

λ− 1
ξ ; ˙̄x(·)

)
+

+
1

2
ε2(1− λ2)

d

dt
E
(
L̄
)(

θ+,
λ

λ− 1
ξ ; ˙̄x(·)

)
+ o(ε2).

From here, considering (5), we obtain:∫ θ+λε

θ
E
(
L̄
)
( t, ξ ; ˙̄x(·)) dt+

∫ θ+ε

θ+λε
E
(
L̄
)(

t,
λ

λ− 1
ξ ; ˙̄x(·)

)
dt =
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= εQ1

(
L̄
)
( θ+, λ, ξ ; ˙̄x(·)) + ε2

2

d

dt
Q2

(
L̄
)
( θ+, λ, ξ ; ˙̄x(·)) + o(ε2). (31)

Quite similarly we have∫ θ+λε

θ
E
(
L̄
)
( t+ h, ξ ; ˙̄y(·)) dt+

∫ θ+ε

θ+λε
E
(
L̄
)(

t+ h,
λ

λ− 1
ξ ; ˙̄y(·)

)
dt =

= εQ1

(
L̄
)
( (θ+h)+, λ, ξ ; ˙̄y(·))+ 1

2
ε2

d

dt
Q2

(
L̄
)
( (θ+h)+, λ, ξ ; ˙̄y(·))+o(ε2). (32)

Therefore, taking into accounts (31) and (32) in (29) we obtain the increment
formula (30). Lemma 3.2 is proven.

4. Formulas for the increment of the functional in the problem
(1),(2) on variations (15)

Considering variation (15), quite similarly to Lemma 3.1, the following Lemma
is proven.

Lemma 4.1. Let functions L(·) and φ (·) be continuously differentiable in
the totality of their arguments and an admissible function x̄(·) is an extremal of
the problem (1), (2), i.e. solution of equation (7). In addition, let the derivative
function ẋ(·) be continuous on the left at the points θ − h, θ and θ + h, where
θ ∈ (t0, t1 − h]. Then for the increment

S(x(−)(·;ϑ, ε);x(·))− S(x(·)) =: ∆(−)S(q(−)(·;ϑ, ε);x(·)) (33)

there is a representation of the form:

∆(−)S(q(−)(·;ϑ, ε);x(·)) =
∫ θ

θ−λε

[
E
(
L̄
)
(t, ξ; ˙̄x(·)) + E

(
L̄
)
(t+ h, ξ; ˙̄y(·))

]
dt+

+

∫ θ−λε

θ−ε

[
E
(
L̄
)(

t,
λ

λ− 1
ξ; ˙̄x(·)

)
+ E

(
L̄
)(

t+ h,
λ

λ− 1
ξ; ˙̄y(·)

)]
dt−

−1

2
ε2λ

[
M

(
L̄x

)
(θ−, λ, ξ; ˙̄x(·)) +M

(
L̄y

)
((θ + h)−, λ, ξ; ˙̄y(·))

]
+ o(ε2), (34)

where functions x(−) (·, ϑ, ε) and q(−) (·, ϑ , ε) are determined by (15) and
(16), in addition ϑ = (θ, λ, ξ) ∈ (t0, t1 − h] × (0, 1) × Rn, ε ∈ (0, ε̃), ε̃ =
min{h, θ−t0} and functions E

(
L̄
)
(· ; ˙̄x(·)), E

(
L̄
)
(· ; ˙̄y(·)), M

(
L̄x

)
(· ; ˙̄x(·)) and

M
(
L̄y

)
(· , · ; ˙̄y(·)) are determined by (4) and (6) taking into account (3).
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Proof. Using the Taylor’s formula with consideration of (3), (4), (15) and
Lemma 2.2, we can easily state that for the increment (33), the equality of the
following form holds:

∆(−)S(q(−)(·;ϑ, ε);x(·)) = ∆(−)S1(q
(−)(·;ϑ, ε);x(·))+

+∆(−)S2(q
(−)(·;ϑ, ε);x(·))− δS(q(−)(·;ϑ, ε);x(·)). (35)

Here
∆(−)S1(q

(−)(·;ϑ, ε);x(·)) =

=

∫ θ

θ−λε

{[
L̄(t, ξ; ˙̄x(·))− L̄(t)

]
+

[
L̄(t+ h, ξ; ˙̄y(·))− L̄(t+ h)

]}
dt+

+

∫ θ−λε

θ−ε

{[
L̄

(
t,

λ

λ− 1
ξ ; ˙̄x(·)

)
− L̄( t)

]
+

+

[
L̄

(
t+ h,

λ

λ− 1
ξ ; ˙̄y(·)

)
− L̄( t+ h)

]}
dt, (36)

∆(−)S2(q
(−)(·;ϑ, ε);x(·)) =

=

∫ θ

θ−λε

{[
L̄T
x (t, ξ; ˙̄x(·)) + L̄T

y (t+ h, ξ; ˙̄y(·))
]
(t− θ)ξ + o(t− θ)

}
dt+

+
λ

λ− 1

∫ θ−λε

θ−ε

{[
L̄x

(
t,

λ

λ− 1
ξ ; ˙̄x(·)

)
+

+L̄y

(
t+ h,

λ

λ− 1
ξ ; ˙̄y(·)

)]
ξ(t− θ + ε) + o(t− θ + ε)

}
dt =

= −1

2
λ2ε2

[
L̄T
x (θ−, ξ; ˙̄x(·)) + L̄T

y ((θ + h)−, ξ; ˙̄y(·))
]
ξ−

−1

2
ε2λ(1− λ)

[
L̄T
x

(
θ−,

λ

λ− 1
ξ; ˙̄x(·)

)
+ L̄T

y

(
(θ + h)−,

λ

λ− 1
ξ; ˙̄y(·)

)]
ξ + o(ε2),

(37)
In addition, from (20) it follows that:

δS(q(−)(·;ϑ, ε); x̄(·)) =
∫ θ

θ−λε

[
L̄T
ẋ (t) + L̄T

ẏ (t+ h)
]
ξdt+

+
λ

λ− 1

∫ θ−λε

θ−ε

[
L̄T
ẋ (t) + L̄T

ẏ (t+ h)
]
ξdt− 1

2
λ2ε2

[
L̄T
x (θ−) + L̄T

y

(
(θ + h)−

)]
ξ−

−1

2
ε2λ(1− λ)

[
L̄T
x (θ−) + L̄T

y

(
(θ + h)−

)]
ξ + o(ε2), (38)
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where q(−)( · ;ϑ, ε) is determined by (16).
Similar to (29) from (35) considering (3), (4), (6) and (36) - (38) it is not

difficult to obtain the validity of the expansion formula (34). Lemma 4.1 is
proven.

Similar to Lemma 3.2, using Lemma 4.1 and assuming additional smoothness
conditions, the following statement is proven.

Lemma 4.2. Let functions L(·), Lẋ(·) and Lẏ(·) be continuously differen-
tiable in the totality of their arguments and the function φ (·)− twice continu-
ously differentiable. Moreover, let the admissible function x̄(·) be an extremal of
the problem (1), (2) and it is twice continuously differentiable on the left in the
semi-neighborhoods of the points θ− h, θ θ+ h, where θ ∈ (t0, t1 − h]. Then for
sufficiently small values ε > 0 there is a representation of the form:

∆(−)S(q(−)(·;ϑ, ε);x(·)) = ε
[
Q1

(
L̄
)
(θ−, λ, ξ; ˙̄x(·)) +Q1

(
L̄
)
((θ + h)−, λ, ξ; ˙̄y(·))

]
−

+
1

2
ε2

{
λ
[
M

(
L̄x

)
(θ−, λ, ξ; ˙̄x(·)) +M

(
L̄y

)
((θ + h)−, λ, ξ; ˙̄y(·))

]
+

+
d

dt

[
Q2

(
L̄
)
(θ−, λ, ξ; ˙̄x(·)) +Q2

(
L̄
)
((θ + h)−, λ, ξ; ˙̄y(·))

]}
+ o(ε2), (39)

where Qk

(
L̄
)
( · ; ˙̄x(·)) and Qk

(
L̄
)
( · ; ˙̄y(·)) , k = 1, 2 ,M

(
L̄x

)
( · ; ˙̄x(·)),

M
(
L̄y

)
( · ; ˙̄y(·)) are determined by (5) and (6).

Proof. Due to the assumption of Lemma 4.2, it is asserted that the expansion
(34) holds. Therefore, it is clear that to prove Lemma 4.2 it is enough to calculate
the integrals in (34). The calculation of these integrals is carried out similarly to
(31) and (32). Specifically, considering (5) and the assumption of Lemma 4.2, we
have: ∫ θ

θ−λε
E
(
L̄
)
( t, ξ ; ˙̄x(·)) dt+

∫ θ−λε

θ−ε
E
(
L̄
)(

t,
λ

λ− 1
ξ; ˙̄x(·)

)
dt =

= εQ1

(
L̄
)
(θ−, λ, ξ; ˙̄x(·))− ε2

2

d

dt
Q2

(
L̄
)
(θ−, λ, ξ; ˙̄x(·)) + o(ε2),∫ θ

θ−λε
E
(
L̄
)
( t+ h, ξ ; ˙̄y(·)) dt+

∫ θ−λε

θ−ε
E
(
L̄
)(

t+ h,
λ

λ− 1
ξ; ˙̄y(·)

)
dt =

= εQ1

(
L̄
)
((θ + h)−, λ, ξ; ˙̄y(·))− 1

2
ε2

d

dt
Q2

(
L̄
)
((θ + h)−, λ, ξ; ˙̄y(·)) + o(ε2).

First, we summarize the last equalities and then take them into account in
(34). As a result, we obtain the increment formula 4.7. Therefore, Lemma 4.2 is
proven.
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5. Necessary conditions for a minimum in the presence of
degeneracy on an interval

At this point, using Lemma 3.1 and 4.1, i.e. based on the increment formulas
(29) and (34), the following theorem is proved.

Theorem 5.1. Let functions L(·) and φ (·) be continuously differentiable
with respect to their arguments and an admissible function x̄(·) is an extremal of

the problem (1), (2), then along it for vectors η ∈ Rn\{0} and λ̄
λ̄−1

η, λ̄ ∈ (0, 1)

Weierstrass condition at any point of the interval (t̄0, t̄1) ⊂ [t0, t1−h] degenerates,
i.e. the equalities hold:

E
(
L̄
)
(t, η; ˙̄x(·)) + E

(
L̄
)
(t+ h, η; ˙̄y(·)) = 0,∀t ∈ (t̄0, t̄1),

E
(
L̄
)(

t,
λ

λ− 1
η; ˙̄x(·)

)
+ E

(
L̄
)(

t,
λ

λ− 1
η; ˙̄y(·)

)
= 0,∀t ∈ (t̄0, t̄1). (40)

In addition, let the function x̄(·) be continuously differentiable in the intervals
(t̄0 − h, t̄1 − h) , (t̄0, t̄1) and (t̄0 + h, t̄1 + h). Then:

(i) if the function x̄(·) is a strong local minimum in the problem (1), (2), then
the equality holds:

M
(
L̄x

)
(t, λ̄, η; ˙̄x(·)) +M

(
L̄y

)
(t+ h, λ̄, η; ˙̄y(·)) = 0, ∀ t ∈ (t̄0, t̄1) , (41)

where functions M
(
L̄x

)
(· ; ˙̄x(·)) and M

(
L̄y

)
(· ; ˙̄y(·)) are determined by (6);

(ii) if the function x̄(·) is a weak local minimum in the problem (1), (2), then

there exist a number δ > 0, at which for each
(
λ, η, λ

λ−1
η
)
∈ (0, 1)×Bδ(0)×Bδ(0),

satisfying condition (40), equality (41) holds, where Bδ(0) - is a closed ball of
radius δ centered at the point 0 ∈ Rn.

Proof. Firstly, let’s prove part (i) of Theorem 5.1. Due to the assumption
of Theorem 5.1, we assert: firstly, Lemmas 3.1 and 4.1 are true, i.e. expansion
formulas (29) and (34) are valid; secondly, for each ϑ = (θ, λ, ξ) ∈ (t̄0, t̄1) ×
(0, 1)×Rn and for sufficiently small ε > 0 ones the inequalities hold:

∆(+)S(q(+)( · ; ϑ, ε); x̄(·)) ≥ 0, ∆(−)S(q(−)( · ; ϑ, ε); x̄(·)) ≥ 0. (42)

Let’s put ϑ = ϑ := (θ, λ, η) ∈ (t0, t1)× (0, 1)× Rn\{0}, where θ is arbitrary
fixed point. Obviously, you can choose a number ε∗ > 0 so that there is a
shutdown [θ − ε∗, θ + ε∗] ⊂ (t0, t1). Let’s consider this in the formulas (29) and
(34). Then, by virtue of (40), for sufficiently small ε ∈ (0, ε∗] , the first two terms
in (29), as well as in (34), i.e. all integral terms in (29) and (34) become zero. As
a result, the expansion formulas (29) and (34) considering (42) take the following
form:
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∆(+)S(q(+)(·;ϑ, ε);x(·)) =

=
1

2
ε2λ

[
M

(
Lx

)
(θ+, λ, η; ˙̄x(·) +M(L̄y)((θ + h)+, λ, η; ˙̄y(·))

]
+ o(ε2) ≥ 0, (43)

∆(−)S(q(−)(·;ϑ, ε); x̄(·)) =

=
1

2
ε2λ

[
M

(
L̄x

)
(θ−, , λ, η; ˙̄x(·)) +M(L̄y)((θ + h)−, λ, η; ˙̄y(·))

]
− o(ε2) ≤ 0, (44)

where ε ∈ (0, ε∗] is quite small number and functions M
(
L̄x

)
(· ) and M

(
L̄y

)
(· )

are determined by (6).
By virtue of the assumption of smoothness of the function L(·), φ (·) and x̄(·),

and considering (6), we can easily confirm that the coefficients ε2 in inequalities
(43) and (44) coincide. Therefore, we obtain:

lim
ε→+0

1

ε2
∆(+)S(q(+)( · ; ϑ̄, ε); x̄(·)) = lim

ε→+0

1

ε2
∆(−)S(q(−)( · ; ϑ̄, ε); x̄(·)) =

=
1

2
λD(θ, λ, η; x̄(·)),

where D(θ, λ̄, η; x̄(·)) = M
(
L̄x

)
( θ, λ̄, η ; ˙̄x(·)) +M(L̄y)( θ, λ̄, η ; ˙̄y(·)).

It is clear that due to the inequalities (43) and (44) we haveD(θ, λ̄, η; x̄(·)) ≥ 0
and D(θ, λ̄, η; x̄(·)) ≤ 0. Hence, considering the arbitrariness of θ ∈ (t̄0, t̄1), the
proof of equality (41) follows. Consequently, part (i) of Theorem 5.1 is proven.

Now we prove part (ii) of Theorem 5.1. Let us consider the in-
crement formulas (43) and (44) obtained for ∆(+)S(q(+)( · ; ϑ̄, ε); x̄(·)) and
∆(−)S(q(−)( · ; ϑ̄, ε); x̄(·)). Here

∆(+)S(q(+)(·; ϑ̄, ε); x̄(·)) = S(x(+)(·; ϑ̄, ε))− S(x̄(·))

and
∆(−)S(q(−)(·; ϑ̄, ε); x̄(·)) = S(x(−)(·; ϑ̄, ε))− S(x̄(·)),

where the functions x(+)( · ; ϑ̄, ε) and x(−)( · ; ϑ̄, ε) for ϑ = ϑ̄ are determined by
(13), (14) and (15), (16), respectively.

Further, by virtue of the definition of the function x(+)(· ; ϑ̄, ε) and
x(−)( · ; ϑ̄, ε) considering (17) and (18) for all ε ∈ (0, ε) ∩ (0, 1] the following
estimates are valid:∥∥∥x(+)(·; ϑ̄, ε)− x̄(·)

∥∥∥
C(Î,Rn)

=
∥∥∥q(+)(·; ϑ̄, ε)

∥∥∥
C(Î,Rn)

≤ ∥η∥ (45)

∥∥∥ẋ(+)(·; ϑ̄, ε)− ẋ(·)
∥∥∥
L∞(Î,Rn)

=
∥∥∥q̇(+)(·; ϑ̄, ε)

∥∥∥
L∞(Î,Rn)

=
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= max

{
∥η∥Rn ,

λ

1− λ
∥η∥Rn

}
. (46)

Similar estimates are valid for
∥∥x(−)(·; ϑ̄, ε)− x̄(·)

∥∥
C(Î,Rn) and∥∥ẋ(−)(·; ϑ̄, ε)− ˙̄x(·)

∥∥
L∞(Î,Rn) at ε ∈ (0, ε̃) ∩ (0, 1].

Since, according to conditions part (ii) of Theorem 5.1, the admissible func-
tion is a weak local minimum in the problem (1), (2) (for certainty with
a neighborhood δ̂), then considering estimates (45) and (46) for each point(
η, (λ̄− 1)−1λ̄η, λ̄

)
∈ Bδ̂(0)×Bδ̂(0)×(0, 1) and ε ∈ (0, ε̂) , ε̂ = min{ε, ε̃, 1}, satis-

fying condition (40), inequalities (43) and (44) hold. Based on the last derivation,
by choosing δ = δ̂ and considering the arbitrariness θ ∈ (t̄0, t̄1), it is not difficult
to obtain a proof of part (ii) of Theorem 5.1. Therefore, Theorem 5.1 is proven.

6. Necessary minimum conditions in the presence of degeneracy
at the point.

In this section, unlike Section 5, we investigate the minimum of the extremal
in problem (1), (2) in the presence of degeneracy at one point. Specifically, with
additional assumptions of smoothness, using Lemmas 3.2 and 4.2, i.e., based on
formulas (30) and (39), the following statement is proven.

Theorem 6.1. Let the functions L(·), Lẋ(·) and Lẏ(·) be continuously dif-
ferentiable with respect to their arguments and the function φ (·)− twice con-
tinuously differentiable. In addition, let the admissible function x̄(·) be a strong
local minimum of the problem (1), (2). Then:

(i) if θ ∈ [t0, t1−h) (θ ∈ (t0, t1−h]) and the function x̄(·) is twice continuously
differentiable in the right (left) semi-vicinity of the points θ − h, θ and θ + h, in
addition, along it, for the number λ̄ ∈ (0, 1), as well as for the vectors η ̸= 0 and
(λ̄− 1)−1λ̄η Weierstrass condition (9) degenerates on the right (left) at the point
θ, i.e. the equalities hold:

E
(
L̄
)
(θ+, η; ˙̄x(·)) + E

(
L̄
)
((θ + h)+, η; ˙̄y(·)) =

= E
(
L̄
) (

θ+, (λ− 1)−1λη; ˙̄x(·)
)
+ E

(
L̄
) (

(θ + h)+, (λ− 1)−1λη; ˙̄y(·)
)
= 0 (47)(

E
(
L̄
)
(θ−, η; ˙̄x(·)) + E

(
L̄
)
((θ + h)−, η; ˙̄y(·)) =

= E
(
L̄
) (

θ−, (λ− 1)−1λη; ˙̄x(·)
)
+ E

(
L̄
) (

(θ + h)−, (λ− 1)−1λη; ˙̄y(·)
)
= 0

)
,
(48)

then the following inequalities hold:

λ̄
[
M

(
L̄x

)
(θ+, λ̄, η; ˙̄x(·)) +M

(
L̄y

)
((θ + h)+, λ̄, η; ˙̄y(·))

]
+
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+
d

dt

[
Q2

(
L̄
) (

θ+, λ̄, η; ˙̄x(·)
)
+Q2

(
L̄
) (

(θ + h)+, λ̄, η; ˙̄y(·)
)]

≥ 0 (49)(
λ̄
[
M

(
L̄x

)
(θ−, λ̄, η; ˙̄x(·)) +M

(
L̄y

)
((θ + h)−, λ̄, η; ˙̄y(·))

]
+

+
d

dt

[
Q2

(
L̄
) (

θ−, λ̄, η; ˙̄x(·)
)
+Q2

(
L̄
) (

(θ + h)−, λ̄, η; ˙̄y(·)
)]

≤ 0

)
, (50)

when E
(
L̄
)
(·), Q2

(
L̄
)
(·), M

(
L̄x

)
(·) and M

(
L̄y

)
(·)are determined by (4) - (6);

(ii) if θ ∈ (t0, t1 − h) and the function x̄(·) is twice continuously differentiable
in certain neighborhood of each points θ − h, θ and θ + h, in addition, along it
for the number λ̄ ∈ (0, 1), as well as for the vectors η ̸= 0 and (λ̄ − 1)−1λ̄η the
Weierstrass condition degenerates at the point θ, i.e. the equalities hold

E
(
L̄
)
(θ, η; ˙̄x(·)) + E

(
L̄
)
(θ + h, η; ˙̄y(·)) =

E
(
L̄
) (

θ, (λ̄− 1)−1λ̄η; ˙̄x(·)
)
+ E

(
L̄
) (

θ + h, (λ̄− 1)−1λ̄η; ˙̄y(·)
)
= 0, (51)

then the equality of the form holds

M
(
L̄x

)
(θ, λ̄, η; ˙̄x(·)) +M

(
L̄y

)
(θ + h, λ̄, η; ˙̄y(·)) = 0. (52)

Proof. First, let us prove part (i) of Theorem 6.1. By virtue of the assump-
tion of Theorem 6.1, Lemma 3.2 (Lemma 4.2) holds, i.e. the expansion (30) (39)
is valid.

Put λ = λ̄ and ξ = η at (30) ((39)). Then by virtue of (5) and (47) (48) it is
easy to obtain:

Q1

(
L̄
) (

θ+, λ̄, η; ˙̄x(·)
)
+Q1

(
L̄
) (

(θ + h)+, λ̄, η; ˙̄y(·)
)
= 0 (53)(

Q1

(
L̄
) (

θ−, λ̄, η; ˙̄x(·)
)
+Q1

(
L̄
) (

(θ + h)−, λ̄, η; ˙̄y(·)
)
= 0

)
. (54)

Since the function x̄(·) is the strong local minimum of the problem (1), (2), from
(30) ((39)) considering ϑ = ϑ̄ = (θ, λ̄, η) and the equation (53) (54) for sufficiently
small ε > 0 we have:

ε−2∆(+)S(q(+)(·; ϑ̄, ε); x̄(·))− o(ε2)/ε2 ≥ 0(
ε−2∆(−)S(q(−)( · ; ϑ̄, ε); x̄(·))− o(ε2)/ε2 ≥ 0

)
.

From here, passing to the limit ε → +0 considering (30) ((39)), we obtain the
validity of inequality (49) ((50)). So, part (i) of Theorem 6.1 is proven.

Now we prove part (ii) of Theorem 6.1. By virtue of assumption part (ii) of
Theorem 6.1, it is easy to confirm that the left sides of inequalities (49) and (50)
coincide. Therefore, the equality is valid:

λ̄
[
M

(
L̄x

)
(θ, λ̄, η; ˙̄x(·)) +M

(
L̄y

)
(θ + h, λ̄, η; ˙̄y(·))

]
+
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+
d

dt

[
Q2

(
L̄
) (

θ, λ̄, η; ˙̄x(·)
)
+Q2

(
L̄
) (

θ + h, λ̄, η; ˙̄y(·)
)]

= 0. (55)

Since the functions Q2

(
L̄
) (

· , λ̄, η̄; ˙̄x(·)
)
and Q2

(
L̄
) (

· , λ̄, η̄; ˙̄y(·)
)
are defined

by (5) at k = 2 , then, considering the assumptions about the smoothness of the
function L(·), Lẋ(·), Lẏ(·), φ(·) and x̄(·) we have:

d

dt

[
Q2

(
L̄
) (

t, λ̄, η; ˙̄x(·)
)
+Q2

(
L̄
) (

t+ h, λ̄, η; ˙̄y(·)
)]∣∣∣∣

t=θ

=

= λ̄2 d

dt

[
E
(
L̄
)
(t, η; ˙̄x(·)) + E

(
L̄
)
(t+ h, η; ˙̄y(·))

]∣∣∣∣
t=θ

+

+
(
1− λ̄2

) d

dt

[
E
(
L̄
) (

t, (λ̄− 1)−1λ̄η; ˙̄x(·)
)
+ E

(
L̄
) (

t+ h, (λ̄− 1)−1λ̄η; ˙̄y(·)
)]∣∣∣∣

t=θ
(56)

Further, since the function x̄(·) is a strong local minimum of the problem (1), (2),
then, by virtue of Weierstrass condition (9) and assumption (51) of the functions

E
(
L̄
)
(· , η; ˙̄x(·)) + E

(
L̄
)
(t+ h, η; ˙̄y(·)) , t ∈ [t0, t1 − h]

and

E
(
L̄
) (

t, (λ̄− 1)−1λ̄η ˙̄x(·)) + E
(
L̄
) (

t+ h, (λ̄− 1)−1λ̄η; ˙̄y(·)
)
, t ∈ [t0, t1 − h]

for the variable t reach the minimum at the point θ ∈ (t0, t1 − h). Then, taking
into account the assumptions about the smoothness of the functions L(·), Lẋ(·),
Lẏ(·), φ(·) and x̄(·) according to Fermat’s theorem [10, page 15], we confirm that
the derivatives of these functions at the point θ are equal zero, and therefore the
left side (56) is equal zero.

Therefore, from (55), considering λ̄ ∈ (0, 1) the last statement and inclusion,
we obtain the proof of the equality (52). Hence, part (ii) of theorem 6.1 is proven.
Thus, theorem 6.1 is completely proven.

Remark 6.1. If the function x̄(·) is a strong local minimum of the problem
(1), (2), then along it from the equation:

Q1

(
L̄
) (

θ̂, λ̄, η; ˙̄x(·)
)
+Q1

(
L̄
) (

θ̂ + h, λ̄, η; ˙̄y(·)
)
= 0 (57)

considering (5) and (9) follows (47) and (48), and vice versa, i.e. from (47) and
(48) follows (57), where θ ∈ {θ+, θ−} and λ ∈ (0, 1). Therefore, it can be said
that the verification of the fulfillment of assumptions (47) and (48) in Theorem
6.1 is more constructive than the verification of the fulfillment of assumptions
like (57).
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Applying the method of proof part (ii) of Theorem 5.1 and using Lemmas 3.2
and 4.2, it is easy to prove the following Theorem.

Theorem 6.2. Let the functions L(·), Lẋ(·) and Lẏ(·) be continuously dif-
ferentiable with respect to their arguments and the function φ (·)− be twice
continuously differentiable. In addition, let the admissible function is the weak
local minimum of the problem (1), (2). Then there exists a number δ > 0, at
which the following statements are true:

(i) If the assumptions made in part (i) of theorem 6.1 are satisfied, then along
the function x̄(·) for each point

(
η, (λ̄− 1)−1λ̄η, λ̄

)
∈ Bδ(0) × Bδ(0) × (0, 1),

satisfying condition (47) (48) the inequality (49) (50) holds;
(ii) If the assumptions made in part (ii) of theorem 6.1 are satisfied, then for

each point
(
η, (λ̄− 1)−1λ̄η, λ̄

)
∈ Bδ(0)×Bδ(0)× (0, 1), satisfying condition (51),

the equality (52) holds.
Remark 6.2. If θ ∈ [t1 − h, t1) , θ ∈ (t1 − h, t1] and θ ∈ (t1 − h, t1) the

problem (1), (2) is studied quite similarly to [23]. In addition, for the case
θ ∈ [t1 − h, t1], the statements of Theorems 5.1, 6.1 and 6.2 simplify in form,
since by assumption the equality L(t, x, y, ẋ, ẏ) = 0,(t, x, y, ẋ, ẏ) ∈ (t1,+∞) ×
Rn ×Rn ×Rn ×Rn.

7. Example and discussions

To demonstrate the effectiveness of the obtained results, for example, the
efficiency of Theorem 5.1, let’s consider the following example.

Example 7.1. Let’s consider the problem:

S(x(·)) =
∫ 3

0

[
(1− x) ẋ2 − (1 + y) ẏ2 + ẋẏ

]
dt → min

x(·)
, (58)

x (t) = 0, t ∈ [−1, 0] , x(3) = 0, (59)

where y = y (t) = x (t− 1) , h = 1, L (t, x, y, ẋ, ẏ) = (1− x) ẋ2 − (1 + y) ẏ2 + ẋẏ.
Let us examine the minimum admissible function x (t) = 0, t ∈ [−1, 3] . Along

this function, considering (3), (4), and (6), we present the following calculations
of the form:

L̄ (t) = L̄x (t) = L̄y (t) = L̄ẋ (t) = L̄ẏ (t) = 0, t ∈ [0, 3] ,

L̄ẏ (t+ 1) = L̄y (t+ 1) = 0, t ∈ [0, 2] ;

L̄
(
t, ξ; ẋ(·)

)
= ξ2, t ∈ [0, 3] , L̄

(
t+ 1, ξ; ẏ(·)

)
= −ξ2, t ∈ [0, 2] ;

L̄x

(
t, ξ; ẋ(·)

)
= −ξ2, t ∈ [0, 3] , L̄y

(
t+ 1, ξ; ẏ(·)

)
= −ξ2, t ∈ [0, 2] ;
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E
(
L̄
) (

t, ξ; ẋ (·)
)
= ξ2, t ∈ [0, 3] , E

(
L̄
) (

t+ 1, ξ; ẏ (·)
)
= −ξ2, t ∈ [0, 2] ;

M
(
L̄x

) (
t, λ, ξ; ẋ (·)

)
= −λξ2 − (1− λ)

(
λ

λ− 1
ξ

)2

= − λ

1− λ
ξ2 , t ∈ [0, 3] ;

M
(
L̄y

)
(t+ 1, λ, ξ; ˙̄y (·)) = −λξ2 − (1− λ)

(
λ

λ− 1
ξ

)2

= − λ

1− λ
ξ2 , t ∈ [0, 2] .

Based on these calculations, we come to the following conclusions:

(a) by virtue of (7) or (8), the admissible function x̄ (·) = 0 is the extremal
of the problem (58), (59);

(b) the function x̄ (·) = 0 satisfies Weierstrass condition (9):

ξ2 ≥ 0,∀ξ ∈ R,∀t ∈ [2, 3] and ξ2 − ξ2 = 0,∀t ∈ [0, 2] ,∀ξ ∈ R;

(c) it is evident that along the function x̄(·) = 0 for all points (λ, η, λ
λ−1η) ∈

(0, 1) × R × R of the Weierstrass condition (9) degenerates at any point in the
interval (0,2).

Considering these conclusions, we apply Theorem 5.1. As a result, statement
(41) does not hold:

2λ

λ− 1
η2 = 0 ,∀(t, λ, η) ∈ (0, 2)× (0, 1)×R\ {0} .

Therefore, by virtue of part (i) of Theorem 5.1, the extremal x̄(·) = 0 cannot
be a strong local minimum in the problem (58), (59).

Further, since equation (41) does not hold for all η ̸= 0 and λ ∈ (0, 1) it is
clear that by virtue of part (ii) of Theorem 5.1, the extremal x̄(·) = 0 is not even
a weak local minimum in the problem (58), (59).

As far as we know, analogs of Theorems 5.1, 6.1 and 6.2 have not been ob-
tained in the theory of singular optimal control.

Comparing this work with the work [24], we easily conclude:

(a) if in the problem (1), (2) the number h = 0, then the statements of
Theorems 5.1, 6.1 and 6.2 coincide with the analogous results in [24];

(b) In this case, the approach proposed by us allows us to obtain analogues
and other results of the work [24].

(c) problem (1), (2) is studied in a manner entirely analogous to [24], if
Weierstrass conditions (9) degenerate at points of the segments [t1 − h, t1];

In conclusion, we also note that the application of the method outlined in
this work is promising for study more complex variational problems with delay
such as variational problem with moving ends and a variational problem on a
conditional extremum.
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