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On the Dynamics of a Quasi-Strictly Non-Volterra
Cubic Stochastic Operator
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Abstract. In this study, we examine cubic stochastic operators, which we will refer to
as quasi-strictly non-Volterra cubic operators. Firstly, the definition of a quasi-strictly
non-Volterra operator is provided, and the structure of an arbitrary quasi-strictly non-
Volterra cubic operator on a two-dimensional simplex S2 is described. Secondly, the fixed
and limit points of the quasi-strictly non-Volterra operator on S2 are investigated. It is
proven that there exists a repelling unique fixed point.
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1. Introduction

One of the primary tasks in studying a dynamical system is to examine the
evolution of the system’s state. Typically, the ”successors” of a system’s state
are determined by a certain law. Quadratic stochastic operators are often used
to solve problems arising in mathematical genetics. These operators attract the
attention of specialists in various areas of mathematics and its applications (see
[3], [4], [5], [6], [8], [9], [12], [20]).

In recent years, cubic stochastic operators have begun to be studied, which
differ from quadratic operators. For the motivation to study such operators, see
[1], [7], [10], [11], [13], [14], [15], [16], [17], [18], [21], [22], [23], [24], [25], and the
literature therein.

In this study, we examine cubic stochastic operators, which we will call quasi-
strictly non-Volterra cubic operators. The structure of the work is as follows:

1. The definition of a quasi-strictly non-Volterra operator is given, and the
structure of an arbitrary quasi-strictly non-Volterra cubic operator on the two-
dimensional simplex S2 is described.
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2. The fixed and limit points of the quasi-strictly non-Volterra operator on
S2 are studied. It is proven that there exists a repelling unique fixed point.

The set

Sn−1 = {x = (x1, x2, x3, ..., xn) ∈ Rn : xi ≥ 0, i = 1, n,
n∑

i=1

xi = 1}

is called an (n− 1)-dimensional simplex.
A cubic stochastic operator defined on a finite-dimensional simplex W :

Sn−1 → Sn−1 has the form:

(Wx)l = x′l =
n∑

i,j,k=1

Pijk,lxixjxk, l = 1, 2, ..., n, (1)

where

Pijk,l = Pikj,l = ... = Pkij,l ≥ 0,

n∑
l=1

Pijk,l = 1, ∀i, j, k ∈ {1, 2, ..., n} (2)

For a given x(0) ∈ Sn−1, the trajectory {x(n)}, n = 0, 1, 2, ..., under the action
of the cubic stochastic operator (1) is defined as: x(n+1) = W (x(n)) for n =
0, 1, 2, ...

One of the main problems in mathematical biology is the study of the asymp-
totic behavior of trajectories. This problem has been completely solved for cer-
tain Volterra cubic stochastic operators (see [10], [14], [15]), which are defined by
equations (2) along with the additional condition Pijk,l = 0 for all l ∈ {i, j, k}.

A cubic stochastic operator is called strictly non-Volterra if:

Pijk,l = 0, ∀ l ∈ {i, j, k}. (3)

Definition 1. A cubic stochastic operator W , defined on Sn−1, is called quasi-
strictly non-Volterra if condition (3) fails only for Piii,i and Pijk,l, i ̸= j ̸= k,
i.e Piii,i ≥ 0 and Pijk,l ≥ 0, i ̸= j ̸= k.

In this work, we will limit ourselves to studying quasi-strictly non-Volterra
cubic stochastic operators defined on S2. In this case, an arbitrary quasi-strictly
non-Volterra cubic stochastic operator W has the form:

W :


x′ = P111,1x

3 + P222,1y
3 + P333,1z

3 + 3P223,1y
2z + 3P233,1yz

2 + 6P123,1xyz,

y′ = P222,2y
3 + P111,2x

3 + P333,2z
3 + 3P133,2xz

2 + 3P113,2x
2z + 6P123,2xyz,

z′ = P111,3x
3 + P222,3y

3 + P333,3z
3 + 3P112,3x

2y + 3P122,3xy
2 + 6P123,3xyz.

(4)
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Let us define: P111,1 = α1, P111,2 = α2, P111,3 = α3, P222,1 = β1, P222,2 =
β2, P222,3 = β3, P333,1 = γ1, P333,2 = γ2, P333,3 = γ3, P123,1 = P123,2 = P123,3.
Substituting into (4), we obtain:

W :


x′ = α1x

3 + β1y
3 + γ1z

3 + 3y2z + 3yz2 + 2xyz,

y′ = α2x
3 + β2y

3 + γ2z
3 + 3xz2 + 3x2z + 2xyz,

z′ = α3x
3 + β3y

3 + γ3z
3 + 3x2y + 3xy2 + 2xyz,

(5)

Let αi, βi, γi ≥ 0, i = 1, 2, 3, and
3∑

i=1
αi =

3∑
i=1

βi =
3∑

i=1
γi = 1

Assume the following:

α1 = β1 = β2 = γ2 = α3 = γ3 = 0, α2 = β3 = γ1 = 1,

Then the operator (5) takes the form:

W :


x′ = z3 + 3y2z + 3yz2 + 2xyz,

y′ = x3 + 3xz2 + 3x2z + 2xyz,

z′ = y3 + 3x2y + 3xy2 + 2xyz.

(6)

2. Fixed Points

A fixed point of operator (6) is a solution λ = (x, y, z) of the equationW (λ) =
λ, i.e., a solution of the system:

z3 + 3y2z + 3yz2 + 2xyz = x,

x3 + 3xz2 + 3x2z + 2xyz = y,

y3 + 3x2y + 3xy2 + 2xyz = z,

(7)

We denote by Fix (W ) the set of all fixed points of the operator W , i.e.,
Fix (W ) = {λ ∈ S2 :W (λ) = λ}.

Define: intS2 = {(x, y, z) ∈ S2 : xyz > 0}, ∂S2 = S2\intS2 and

C =
(1
3
,
1

3
,
1

3

)
.

Theorem 1. For operator (6), the following holds:

i) Fix (W ) ∩ ∂S2 = ∅;

ii) Fix (W ) ∩ intS2 =
{
C
}
.
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Proof.
i) Suppose (x, y, z) ∈ ∂S2. For definiteness, assume x = 0 (the cases y = 0

and z = 0 are analyzed similarly). Then, from (7), it is straightforward to obtain
that x = y = z = 0 is a solution of the system. However, (0, 0, 0) /∈ S2. Thus, we
conclude that:

Fix (W ) ∩ ∂S2 = ∅.

ii) Let (x, y, z) ∈ intS2. From the first and second equations in (7), we obtain

z3 − x3 + 3y2z − 3x2z + 3yz2 − 3xz2 = x− y

or
(z − x)(z2 + xz + x2) = (x− y)(1 + 3z(x+ y) + 3z2). (8)

Similarly, from the first and third equations in (7), we obtain

(z − y)(z2 + yz + y2) = (x− z)(1 + 3y2 + 3y(x+ z)). (9)

Furthermore, from the second and third equations in (7), we obtain

(x− y)(x2 + xy + y2) = (y − z)(1 + x2 + 3x(y + z)). (10)

For any (x, y, z) ∈ intS2 it is clear that,

z2 + xz + x2 > 0, z2 + yz + y2 > 0, x2 + xy + y2 > 0 and

1 + 3z(x+ y) + 3z2 > 0, 1 + 3y2 + 3y(x+ z), 1 + x2 + 3x(y + z) > 0.

Suppose that z ≥ x (respectively z ≤ x) then from equation (8), (9) and (10),
it follows that x ≥ y (respectively x ≤ y) and y ≥ z (respectively y ≤ z). That
is, we obtain z ≥ x ≥ y ≥ z (respectively z ≤ x ≤ y ≤ z). Therefore, the system
of equations (7) has a unique solution x = y = z = 1/3.

Thus, C(1/3, 1/3, 1/3) is the unique fixed point of operator (6).
Theorem is proven.

Definition 2. (see [2]) If the Jacobian J of operator W at a fixed point λ does
not have eigenvalues on the unit circle, then the point λ is called hyperbolic.

Definition 3. (see [2]) A hyperbolic fixed point λ is called:

- attracting if all absolute values of the eigenvalues of the Jacobian matrix
J(λ) are less than 1;

- repelling if all absolute values of the eigenvalues of the Jacobian matrix J(λ)
are greater than 1;
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- saddle in all other cases.

Definition 4. A continuous function φ : Sm−1 → R is called a Lyapunov function
for a cubic operator W if the limit lim

n→∞
φ(λ(n)) exists for any λ ∈ Sm−1.

To determine the type of fixed point for operator (6), we rewrite it in the
form

W :

{
x′ = 1− 3x+ 3x2 − x3 − y3 + 2xy − 2x2y − 2xy2,

y′ = x3 − 3x2 + x2y + 3x+ xy2 − 4xy,
(11)

Here (x, y) ∈ {(x, y) : x, y ≥ 0, 0 ≤ x + y ≤ 1} where x, y-are the first two
coordinates of points in the simplex S2.

The eigenvalues of the Jacobian matrix of operator (13) at the point C have
the form

|λ1,2| =

∣∣∣∣∣−7±
√
3i

6

∣∣∣∣∣ > 1

Thus, the point is repelling for operator (6).

3. ω-limit set

Let λ0 = (λ01, λ
0
2, λ

0
3) ∈ S2 be the initial point and let λ(n), n = 0, 1, 2, ...-

denote the trajectory of the point λ0 under the action of operator (6), i.e.,

λ(n) = (λ
(n)
1 , λ

(n)
2 , λ

(n)
3 ) =W (λ(n−1)), n = 1, 2, ...; λ(0) = λ0.

We denote by ω(λ0) the ω−limit set of the trajectory {λ(n), n = 0, 1, 2...}.
Since {λ(n)} ⊂ S2, and S2 compact, we have ω(λ0) ̸= ∅. Note that if ω(λ0)

contains a single point, the trajectory converges to this point ,which is also a
fixed point of the operator W , given by formula (6).

Theorem 2. For the cubic operator (6), the following holds:

i) W 3(e1) =W 2(e2) =W (e3) = e1;

ii) For any λ0 ∈ ∂S2, the ω-limit set is ω(λ0) = {e1, e2, e3};

iii) The function φ(x) = xyz is a Lyapunov function;

iv) For any λ0 ∈ intS2\{C}, the ω-limit set of the trajectory lies on the bound-
ary of the simplex.
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Proof.
i) It is easy to verify that W 3(e1) =W 2(e2) =W (e3) = e1.

ii) Let λ0 ∈ ∂S2 and for definiteness, let λ0 = (0, ε, 1 − ε) ∈ ∂S2, where
ε ∈ [0; 1]. Then from (6), it is easy to obtain that:

λ(n) = λ(n)(ε) =


(0, ε3

n
, 1− ε3

n
), if n = 3k,

(1− ε3
n
, 0, ε3

n
), if n = 3k + 1,

(ε3
n
, 1− ε3

n
, 0), if n = 3k + 2,

k = 0, 1, 2, ...

Thus, ω(λ0) = {e1, e2, e3} for λ0 ∈ ∂S2.
iii) For λ = (x, y, z) ∈ S2 define:

φ(λ) = φ(x, y, z) = xyz, ψ(λ) = 4− 3(xy + yz + xz).

It is easy to verify that:

max
λ∈S2

ψ(λ) = ψ(C) = 1, C =
(1
3
,
1

3
,
1

3

)
. (12)

Thus, we have:
φ(W (λ)) = φ(λ)ψ(λ) ≤ φ(λ). (13)

Hence, the function φ(λ) = xyz is a Lyapunov function for operator (6).
iv) Now, let λ0 ∈ intS2\{C}. In this case , we will prove that x(n)y(n)z(n) → 0

as n→ ∞. From (13), we obtain:

φ(λ(n+1)) ≤ φ(λ(n)) (14)

and from where we get lim
n→∞

φ(λ(n)) = µ.

Let us prove that µ = 0. Suppose µ > 0, then:

1 = lim
n→∞

φ(λ(n+1))

φ(λ(n))
= lim

n→∞
ψ(λ(n)). (15)

Using ψ(λ) = 4− 3(xy + yz + xz), from (15) we have :

lim
n→∞

(
x(n)y(n) + y(n)z(n) + x(n)z(n)

)
=

1

3
.

Since the expression xy+yz+xz achieves its conditional minimum of 1/3 on the
two- dimensional simplex only at the point C, it follows that:

lim
n→∞

λ(n) = C.
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Assume the opposite, i.e., suppose there exists a subsequence {nk}k=1,2,... such
that

lim
k→∞

λ(nk) = ν ̸= C. (16)

Due to the continuity of ψ from (12), (15) and (16), we get:

lim
k→∞

ψ(λ(nk)) = ψ(ν) < 1. (17)

Since ν ̸= C, inequality (17) contradicts equality (15).Thus we conclude:

lim
n→∞

x(n) = lim
n→∞

y(n) = lim
n→∞

z(n) =
1

3
.

This is impossible, as the unique fixed point C of the cubic stochastic operator
(6) is repelling.

Therefore:

lim
n→∞

x(n)y(n)z(n) = 0 ⇔ ω
(
λ0

)
⊂ ∂S2, ∀λ0 ∈ intS2\{C}.

Theorem is proven.
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