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QUEUEING-INVENTORY SYSTEM WITH RETURN OF PURCHASED ITEMS
AND CUSTOMER FEEDBACK

Dhanya Shajin1,2,* and Agassi Melikov3

Abstract. In this paper, a model of single server queueing-inventory system (QIS) with Markovian
Arrival Process (MAP) and phase-type distribution (PH-distribution) of the service time of consumer
customers (𝑐-customers) is considered. After completing the service of 𝑐-customer, he (she) can make
one of the following decisions: (1) eventually leave the system with probability (w.p.) 𝜎ℓ; (2) after a
random “thinking” time returns the purchased item w.p. 𝜎𝑟; (3) after a random “thinking” he (she)
feedback to buy a new item w.p. 𝜎𝑓 . It is assumed that 𝜎ℓ+𝜎𝑟+𝜎𝑓 = 1. If upon arrival of the 𝑐-customer
the system main warehouse (SMW) is empty, then the incoming customer, according to the Bernoulli
scheme, is either joins the infinite queue or leaves the system. A virtual finite orbit can be considered as
a waiting room for feedback customers (𝑓 -customers). Returned items are considered new and are sent
directly to SMW if there is at least one free space; otherwise, this item is sent to a special warehouse
for returned items (WRI). After completing the service of each customer, one item is instantly sent
from the WRI (if any) to the SMW. In SMW, the (𝑠, 𝑆) replenishment policy is used and it is assumed
that the lead time follows exponential distribution with finite parameter. When the stock level reaches
its maximum value due to items returns, the system immediately cancels the regular order. Along with
classical performance measures of QIS new specific measures are defined and numerical method for
their calculation as well as maximization of the revenue function are developed. Results of numerical
examples to illustrate the effect of different parameters on the system’s performance measures are
provided and analyzed. We also provide a detailed analysis of an important special case of the Poisson
process/exponential service time model.
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1. Introduction

The pioneering works in the theory of queuing-inventory systems (QISs) are those of Sigman and Simchi-Levi
[43] and Melikov and Molchanov [30] which were published independently each other. After these works, in
last three decades, this theory has become an independent and rapidly developing part of operations research.
Numerous papers published over the years have taken into account various specific features of QIS models. So,
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the models of perishable and non-perishable QISs under different replenishment policies have been studied by
various authors, see fundamental studies by Daduna [14], Otten and Daduna [33], Schwarz and Daduna [36],
Schwarz et al. [37], Krishnamoorthy and Jose [22], Chakravarthy and Rao [11], Chakravarthy and Rumyantsev
[12], Jose and Nair [20], Baek [8], Rasmi et al. [34] etc.

It is obvious that within the framework of one model it is not possible to take into account all kinds of
specific features of QISs. One of the important features of the systems is the return of purchased items. Indeed,
returning of a purchased inventory due to various reasons (e.g. turns out to be faulty or low-quality items,
doesn’t look or work as advertised) before its expiry is a common phenomenon in the real-life queuing-inventory
systems. For example, under EU rules, a seller has the right to a minimum 2-year guarantee, at no cost, and
he (she) can return any purchase within 14 days without justification (well-known 14-day cooling-off period,
that is, a period of time following a purchase when the customer may choose to cancel a purchase, and return
items which have been supplied, for any reason, and obtain a full refund). This phenomenon has been studied
in detail for QIS with common life time (CLT) inventory by Shajin et al. [40], Krishnamoorthy et al. [24, 25],
Krishnamoorthy et al. [26], Shajin et al. [41], Shajin and Krishnamoorthy [39], Shajin et al. [42]. In these papers,
seats on scheduled transport (e.g. flight/train/bus) are considered as CLT inventory. Indeed, once the scheduled
transport departs, all inventory (sold and unsold), is lost because the life time of the items in the inventory has
expired.

A review of works devoted to the study of classical inventory management systems (i.e. in systems without
a service station) taking into account the effect of the return of purchased items can be found in Marisa et al.
[15]. But the influence of this effect was not taken into account in the models of queuing-inventory systems.

Let’s consider a brief overview of work on QIS models with CLT, which take into account the return of
purchased inventory. The pioneer papers in this topic was done by Krishnamoorthy et al. [24, 25]. Authors
considered single-server QIS with exponentially distributed CLT in which arrived customer immediately taken
for service if on arrival the server is idle and the inventory level is positive; otherwise, he (she) is added to a
limited buffer, the size of which depends on inventory level. Consumers form a homogeneous Poisson process,
and their service time in the server has an exponential distribution. If the waiting room is completely full when a
customer arrives, then the arriving customer goes into an orbit of infinite capacity or is lost forever according to
Bernoulli’s trials. The intensity of retrial customers from the orbit is a constant value. The return of sold goods
occurs according to an exponentially distributed time, where its parameter depends on the level of inventory. It
is assumed that lead time is zero, i.e. on expiry of CLT, the inventory reaches its maximum level instantaneously
for the next cycle. Customers being pushed out from the finite waiting room, but not from the orbit, when the
CLT is implemented. Main performance measures are calculated and numerical examples are demonstrated,
including the results of some optimization problems. Similar model was analyzed in Krishnamoorthy et al. [26].
In this paper, the authors show that if no customers join the system when the inventory level is zero, the product
form solution for the distribution of system states is guaranteed. Model of QIS in which the reservation has
to be done in one of the multiple time frames (slots) was considered by Shajin et al. [41]. At the beginning of
each time frame, the inventoried items have CLT with phase-type distribution and the customer arrivals forms
a Markovian arrival process (MAP). Unlike previous papers, reservations through overbooking are allowed here
(for each time frame), if at the time of the start of customer service the inventory is not available in the required
period of time. All overbooked customers present in the recently expired time slot will be granted a reservation
in the newly added time slot. Similar model was considered in Shajin and Krishnamoorthy [39]. Here the authors
show that in the special case of Poisson process/exponentially distributed service time there is an asymptotic
solution in product form. In Shajin et al. [42], a correlated QIS with (𝑠, 𝑆) replenishment policy, MAP flow,
PH-distributed service time and exponential replenishment time was investigated. Items in each cycle have a
CLT with an exponential distribution, and before this is realized, a purchased item in a cycle can be canceled in
that cycle itself, provided that inventory levels have not dropped to zero. The time between cancellations follows
independent exponential distributions. For the special case of Poisson process/exponential service time, authors
show that a product form solution is existing, i.e. extending previous work to the case of correlated lead time is
performed. At the end of this paragraph note that models of QISs with CLT without returning of a purchased
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inventory appeared earlier in the inventory literature in papers by Lian and Neuts [28] and Chakravarthy [10]
and continues to be researched to this day, see Dissa and Ushakumari [16,17].

All customers leaving the QIS can be divided into three groups: (1) customers who permanently leave the
system and will not return (episodic customers); (2) customers who are thinking about returning purchased
inventory (hesitant customers) and (3) customers who will return for a new part of the inventory (regular
customers). Here we take into account all three types of customers, i.e. we study a real-life case which combines
returning of a purchased goods before the expiry of specified time (this time is determined by the laws of
each country) and feedback of satisfied customers. Returning purchased inventory in QIS with non-perishable
inventory as well as individual life time (ILT) inventory does not appear to have been previously discussed in
the available literature. Krishnamoorthy et al. [23], Krishnamoorthy et al. [27] and Choi et al. [13] provides a
detailed review on work in models of QIS with positive service time. These reviews do not contain any reference
related to returning of a purchased inventory. Since these reviews, several papers have been published that
consider the return of purchased inventory, see Vinitha et al. [47], Jeganathan et al. [19] and Saranya et al. [35].
Note that these papers make some unrealistic for QISs assumptions. Thus, Jeganathan et al. [19] do not take
into account the limited size of the warehouse, that is, the classical inventory system was considered. Vinitha
et al. [47] consider a system with instant service (i.e. service time is zero) and assume that the system allows
returns of purchased items only if the warehouse is not full. Saranya et al. [35] assumed that returned goods are
stored in a warehouse of unlimited capacity. In this paper, we excluded unrealistic assumptions, that is, here
we develop a QIS model that is more adequate to the real situation.

In order to reduce the number of returns of sold items due to poor quality, in some cases an effective solution
may be to organize a quality check (inspection) of items arriving at the warehouse. In recent years, models of
such QISs have been studied in the works of Aghsami et al. [1, 2].

In QISs, in addition to primary customers, repeat customers are often also serviced. It is necessary to dis-
tinguish between two types of repeat customers: (1) customers that require re-service because there was either
no space in the system, no inventory, or both when they were received; (2) customers that have already been
serviced previously and require re-service due to a number of reasons. The first type of systems was considered
by Manikandan and Nair [29], where the authors considered a single sever QIS model 𝑀/𝑀/1/1 in which failed
attempts to access an idle server are joined to an orbit of infinite capacity. Lost sale scheme is used in the
system, i.e. primary customers, who encounter an idle server without stock at its arrival epoch, leave the system
for ever. The condition for stability is obtained and an algorithmic approach for the computation of the system
steady-state probabilities and performance measures is used. The interested reader can find further references
in this area in Shajin and Krishnamoorthy [38]. Recently, Hanukov [18] proposed a new retrial scheme where
the physical presence of the customer in the system is not required during the service period in the server, i.e.
the customer can go into orbit, and then contact the system after a random time to determine whether the
service of its order has been completed or not; if the order has not yet been completed, the customer is sent
back into orbit.

Systems of the second type are called feedback systems. “The terminology feedback” first appeared in the
queuing literature in the work of Takacs [45, 46]. The literature on queuing with feedback is very rich, see,
for instance, Koroliuk et al [21], Ayyapan and Karpagam [6], Ayyapan and Thilagavathy [7] and Bouchentouf
et al. [9]. However, it is only recently that this terminology has appeared in the QIS literature in papers by
Amirthakodi and Sivakumar [3, 4], Amirthakodi et al. [5], Suganya et al. [44] and Melikov et al. [31]. The
feedback (instantaneous or delayed) is divided into single feedback (a customer can feedback only once) and
multiple feedback (where a customer can feedback several times). In QIS, feedback can occur for two reasons: (1)
when the customer’s previous service is not satisfactory (for example, in communications networks, erroneously
transmitted packets require retransmission) and (2) when the customer is very satisfied with the previous service
and therefore returns to the system (in shopping centre, customers who receive pleasant service return to this
centre). Here we assume that in both cases the feedback customer will purchase the inventory but will not
return the purchased inventory. In other words, in this paper we consider a real-life case which combines items
return before the specified time of expiry and feedback satisfied customers. Summarize, the main novelty of the
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proposed model lies as it simultaneously takes into account two opposite phenomenon in real QISs: return of
items sold from unsatisfied customers and purchase of a new batch of items from satisfied customers. Moreover,
both events are not instantaneous, that is, the decision to return the sold item and feedback is implemented
during some (random) delay after completion of the previous service.

The main contributions of our paper are as follows:

– A new and adequate to the real situation QIS model is proposed, which takes into account the returns of
items sold from dissatisfied customers, as well as feedback from already served satisfied customers for the
purchase of a new batch of items.

– We study a QIS model with a MAP flow, PH-distributed service time, exponential lead time and two
warehouses, one of which is assigned to items from an external source, and the other warehouse is intended
for storing returned items.

– The stability condition of the constructed mathematical model of the studied QIS was obtained and algo-
rithms for calculating the steady-state probabilities and the desired performance measures were developed.

– For the Poisson/exponential model, it is shown that in the case of a lost sale scheme, the stability condition
depends only on the intensity of primary customers and their service time and does not depend on other
parameters of the system.

– Although for the sake of concreteness of the presentation it is assumed that the system uses the (𝑠, 𝑆)
replenishment policy from an external source, the proposed approach can be used for other policies as well.

– Behavior of the performance measures versus the QIS parameters is demonstrated as results of numerical
experiments, and the results of the problem of maximization of the revenue are discussed.

Following notations, abbreviations and definitions are needed:

𝐼 : Identity matrix of appropriate order
e : Column vector of 1’s of appropriate order
⊗ : Kronecker product
⊕ : Kronecker sum
QIS : Queueing inventory system
MAP : Markovian Arrival Process
CLT : Common life time
PH : Phase type distribution
SMW : System main warehouse
WRI : Warehouse for returned items
CTMC : Continuous time Markov Chain
𝑐-customers : Consumer customers
𝑓 -customers : Feedback customers

𝑆 Main warehouse maximum capacity
𝜑1 Probability of joins the queue
𝜑2 Probability of leaves the system
(𝐷0, 𝐷1) MAP representation of order 𝑎
(𝛼, 𝑇 ) PH representation of order 𝑏
𝜎𝑟 Probability of returns the purchased item and returns the purchased item

after the “thinking” within a random time ∼ exp(𝜁𝑟)
𝜎𝑓 Probability of feedback to buy a new item and feedback to buy a new item

after the “thinking” within a random time ∼ exp(𝜁𝑓 )
𝜎ℓ Probability of eventually leaves the system
𝑠 Reorder point
𝜃 Positive lead time ∼ exp(𝜃)
𝐾 Special warehouse for returned items with finite capacity
𝑁 Capacity of finite orbit (waiting space for feedback customers) and

inter-occurrence time from the orbit ∼ exp(𝜂)
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The rest of this paper as follows: Section 3 describes the system in general set up and established stability.
Steady state analysis is provided in Section 4 and some performance measures investigated. Numerical illus-
trations are provided in Section 5. The next section analyzes the special case with all underlying distributions
exponential. Finally given a few suggestions for future work.

2. Description of the model

Consider a single server queueing-inventory system (QIS) in which main warehouse has maximum capacity 𝑆.
Input flow of homogeneous consumer customers (𝑐-customers) follows Markovian arrival process with represen-
tation (𝐷0, 𝐷1) of order 𝑎. Let 𝛾 be the steady state probability vector of 𝐷 = 𝐷0 +𝐷1. Then, 𝛾 satisfy 𝛾𝐷 = 0
and 𝛾e = 1. The fundamental rate is given by 𝜆 = 𝛾𝐷1e which gives the expected number of arrivals per unit
of time. Customers homogeneity means that each customer requires the same size of inventory. The waiting
room for 𝑐-customers is infinite size. A hybrid sale scheme is applied, that is, if upon arrival of 𝑐-customer the
inventory level is zero, then, in accordance to the Bernoulli trials, it either joins the queue with probability 𝜑1

(backorder sale scheme) or leaves the system without inventory with probability 𝜑2 = 1−𝜑1 (lost sale scheme).
Service time of the 𝑐-customer has phase type distribution with representation (𝛼, 𝑇 ) of order 𝑏. The mean
service of the customer is calculated by 𝜇′ = −𝛼𝑇−1e. At the end of each service the inventory level decreases
by one unit.

Once a customer leaving the system after completing his (her) service, he (she) can make one of the following
decisions:

– he (she) returns the purchased item with probability 𝜎𝑟 after the “thinking” within a random time. It follows
exponential distribution with parameter 𝜁𝑟;

– he (she) can feedback to buy a new item with probability 𝜎𝑓 after the “thinking” within a random time
which is exponentially distributed with parameter 𝜁𝑓 ;

– he (she) eventually leaves the system with probability 𝜎ℓ;

where 𝜎ℓ + 𝜎𝑟 + 𝜎𝑓 = 1.
The returned item is considered as fresh one and it goes directly to the system main warehouse (SMW) if at

least one free space there. If the main warehouse is completely full, then this item is sent to a special warehouse
for returned items (WRI) with finite capacity (say) 𝐾. Return of item is not allowed when the special warehouse
is full, i.e. it is assumed that unsuccessful attempts to return an item will be back to its source in case of a full
WRI and he/she will try again in the future. After completing service of each customer, one item is instantly
sent to the SMW from the WRI (if any). In SMW, the inventory system follows (𝑠, 𝑆) policy when the inventory
level drops to the reoder point 𝑠 order placed with positive lead time. It follows exponential distribution with
parameter 𝜃. When the inventory level reaches 𝑆 due to returning of items, the system instantly cancels the
regular order.

A virtual finite orbit of size (say) 𝑁 can be considered as a waiting room for feedback customers (𝑓 -customers).
Inter-occurrence time for 𝑓 -customers from the orbit have an exponential distribution with parameter 𝜂. Service
time distribution of 𝑓 -customers is same as 𝑐-customers. If upon arrival of 𝑓 -customer server is idle and inventory
level is positive, then its service time started, else (that is, at the moment the server is busy or no items in
the main warehouse) the 𝑓 -customer will return to orbit and retry for the service (see graphical description
in Fig. 1). It is assumed that the arrival of primary customers, retrial of feedback customers and arrival of
customers who return items, service times and replenishment processes are mutually independent.

Define 𝑁𝑆(𝑡) as the number of customers in the system including the one in service, 𝐼𝑟(𝑡), the number of
items in the special warehouse (WRI), 𝑁𝑂(𝑡) is the number of feedback customers in the orbit, 𝐼(𝑡) is the
number of items in the main warehouse, 𝐶(𝑡) is the phase of service and 𝑀(𝑡) is the phase of arrival process.
Then Ω = {(𝑁𝑆(𝑡), 𝐼𝑟(𝑡), 𝑁𝑂(𝑡), 𝐼(𝑡), 𝐶(𝑡), 𝑀(𝑡)), 𝑡 ≥ 0} is a continuous time Markov chain (CTMC) on the
state space

{(0, 0, 𝑛𝑜, 𝑖, 𝑘), 0 ≤ 𝑛𝑜 ≤ 𝑁, 0 ≤ 𝑖 ≤ 𝑆, 1 ≤ 𝑘 ≤ 𝑎}
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Figure 1. Picture representation of the model.

⋃︁
{(0, 𝑖𝑟, 𝑛𝑜, 𝑆, 𝑘), 1 ≤ 𝑖𝑟 ≤ 𝐾, 0 ≤ 𝑛𝑜 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑎}⋃︁
{(𝑛, 0, 𝑛𝑜, 0, 𝑘), 𝑛 ≥ 1, 0 ≤ 𝑛𝑜 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑎}⋃︁
{(𝑛, 0, 𝑛𝑜, 𝑖, 𝑗, 𝑘), 𝑛 ≥ 1, 0 ≤ 𝑛𝑜 ≤ 𝑁, 1 ≤ 𝑖 ≤ 𝑆, 1 ≤ 𝑗 ≤ 𝑏, 1 ≤ 𝑘 ≤ 𝑎}⋃︁
{(𝑛, 𝑖𝑟, 𝑛𝑜, 𝑆, 𝑗, 𝑘), 𝑛 ≥ 1, 1 ≤ 𝑖𝑟 ≤ 𝐾, 0 ≤ 𝑛𝑜 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑏, 1 ≤ 𝑘 ≤ 𝑎}.

The transition rates are:

(a) Transitions rates due to the arrival:

(𝑛, 0, 𝑛𝑜, 0) → (𝑛 + 1, 0, 𝑛𝑜, 0) : rate 𝜑1𝐷1 for 𝑛 ≥ 0, 0 ≤ 𝑛𝑜 ≤ 𝑁
(0, 0, 𝑛0, 𝑖) → (1, 0, 𝑛0, 𝑖) : rate 𝛼⊗𝐷1 for 0 ≤ 𝑛𝑜 ≤ 𝑁, 1 ≤ 𝑖 ≤ 𝑆
(0, 𝑖𝑟, 𝑛0, 𝑆) → (1, 𝑖𝑟, 𝑛0, 𝑆) : rate 𝛼⊗𝐷1 for 1 ≤ 𝑖𝑟 ≤ 𝐾, 0 ≤ 𝑛𝑜 ≤ 𝑁
(𝑛, 0, 𝑛0, 𝑖) → (𝑛 + 1, 0, 𝑛0, 𝑖) : rate 𝐼 ⊗𝐷1 for 𝑛 ≥ 1, 0 ≤ 𝑛𝑜 ≤ 𝑁, 1 ≤ 𝑖 ≤ 𝑆
(𝑛, 𝑖𝑟, 𝑛0, 𝑆) → (𝑛 + 1, 𝑖𝑟, 𝑛0, 𝑆) : rate 𝐼 ⊗𝐷1 for 𝑛 ≥ 1, 1 ≤ 𝑖𝑟 ≤ 𝐾, 0 ≤ 𝑛𝑜 ≤ 𝑁.

(b) Transitions rates due to service completion:

(1, 0, 𝑛𝑜, 𝑖) → (0, 0, 𝑛𝑜, 𝑖− 1) : rate T0 ⊗ 𝐼 for 0 ≤ 𝑛𝑜 ≤ 𝑁, 1 ≤ 𝑖 ≤ 𝑆
(1, 𝑖𝑟, 𝑛0, 𝑆) → (0, 𝑖𝑟 − 1, 𝑛0, 𝑆) : rate T0 ⊗ 𝐼 for 1 ≤ 𝑖𝑟 ≤ 𝐾, 0 ≤ 𝑛𝑜 ≤ 𝑁
(𝑛, 0, 𝑛0, 1) → (𝑛− 1, 0, 𝑛0, 0) : rate T0 ⊗ 𝐼 for 𝑛 ≥ 2, 0 ≤ 𝑛𝑜 ≤ 𝑁
(𝑛, 0, 𝑛0, 𝑖) → (𝑛− 1, 0, 𝑛0, 𝑖− 1) : rate T0𝛼⊗ 𝐼 for 𝑛 ≥ 2, 0 ≤ 𝑛𝑜 ≤ 𝑁, 2 ≤ 𝑖 ≤ 𝑆
(𝑛, 𝑖𝑟, 𝑛0, 𝑆) → (𝑛− 1, 𝑖𝑟 − 1, 𝑛0, 𝑆) : rate T0𝛼⊗ 𝐼 for 𝑛 ≥ 2, 1 ≤ 𝑖𝑟 ≤ 𝐾, 0 ≤ 𝑛𝑜 ≤ 𝑁.

(c) Transitions rates due to retrial:

(0, 0, 𝑛𝑜, 𝑖) → (1, 0, 𝑛𝑜 − 1, 𝑖) : rate 𝑛𝑜𝜂𝛼⊗ 𝐼 for 1 ≤ 𝑛𝑜 ≤ 𝑁, 1 ≤ 𝑖 ≤ 𝑆
(0, 𝑖𝑟, 𝑛0, 𝑆) → (1, 𝑖𝑟, 𝑛0 − 1, 𝑆) : rate 𝑛𝑜𝜂𝛼⊗ 𝐼 for 1 ≤ 𝑖𝑟 ≤ 𝐾, 1 ≤ 𝑛𝑜 ≤ 𝑁.
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(d) Transitions rates due to replenishment:

(0, 0, 𝑛𝑜, 𝑖) → (0, 0, 𝑛𝑜, 𝑆) : rate 𝜃 ⊗ 𝐼 for 0 ≤ 𝑛𝑜 ≤ 𝑁, 0 ≤ 𝑖 ≤ 𝑆 − 1
(𝑛, 0, 𝑛𝑜, 0) → (𝑛, 0, 𝑛𝑜, 𝑆) : rate 𝜃𝛼⊗ 𝐼 for 𝑛 ≥ 1, 0 ≤ 𝑛𝑜 ≤ 𝑁
(𝑛, 0, 𝑛𝑜, 𝑖) → (𝑛, 0, 𝑛𝑜, 𝑆) : rate 𝜃 ⊗ 𝐼 for 𝑛 ≥ 1, 0 ≤ 𝑛𝑜 ≤ 𝑁, 1 ≤ 𝑖 ≤ 𝑆 − 1.

(e) Transitions rates due to return of items:

(0, 0, 𝑛𝑜, 𝑖) → (0, 0, 𝑛𝑜, 𝑖 + 1) : rate 𝜎𝑟𝜁𝑟 ⊗ 𝐼 for 0 ≤ 𝑛𝑜 ≤ 𝑁, 0 ≤ 𝑖 ≤ 𝑆 − 1
(0, 𝑖𝑟, 𝑛𝑜, 𝑆) → (0, 𝑖𝑟 + 1, 𝑛𝑜, 𝑆) : rate 𝜎𝑟𝜁𝑟 ⊗ 𝐼 for 0 ≤ 𝑖𝑟 ≤ 𝐾 − 1, 0 ≤ 𝑛𝑜 ≤ 𝑁
(𝑛, 0, 𝑛𝑜, 0) → (𝑛, 0, 𝑛𝑜, 1) : rate 𝜎𝑟𝜁𝑟𝛼⊗ 𝐼 for 𝑛 ≥ 1, 0 ≤ 𝑛𝑜 ≤ 𝑁
(𝑛, 0, 𝑛𝑜, 𝑖) → (𝑛, 0, 𝑛𝑜, 𝑖 + 1) : rate 𝜎𝑟𝜁𝑟 ⊗ 𝐼 for 𝑛 ≥ 1, 0 ≤ 𝑛𝑜 ≤ 𝑁, 1 ≤ 𝑖 ≤ 𝑆 − 1
(𝑛, 𝑖𝑟, 𝑛𝑜, 𝑆) → (𝑛, 𝑖𝑟 + 1, 𝑛𝑜, 𝑆) : rate 𝜎𝑟𝜁𝑟 ⊗ 𝐼 for 𝑛 ≥ 1, 1 ≤ 𝑖𝑟 ≤ 𝐾 − 1, 0 ≤ 𝑛𝑜 ≤ 𝑁.

(f) Transitions rates due to feedback of customers:

(0, 0, 𝑛𝑜, 𝑖) → (0, 0, 𝑛𝑜 + 1, 𝑖) : rate 𝜎𝑓𝜁𝑓 ⊗ 𝐼 for 0 ≤ 𝑛𝑜 ≤ 𝑁 − 1, 0 ≤ 𝑖 ≤ 𝑆
(𝑛, 𝑖𝑟, 𝑛𝑜, 𝑆) → (𝑛, 𝑖𝑟, 𝑛𝑜 + 1, 𝑆) : rate 𝜎𝑓𝜁𝑓 ⊗ 𝐼 for 𝑛 ≥ 0, 1 ≤ 𝑖𝑟 ≤ 𝐾, 0 ≤ 𝑛𝑜 ≤ 𝑁 − 1
(𝑛, 0, 𝑛𝑜, 𝑖) → (𝑛, 0, 𝑛𝑜 + 1, 𝑖) : rate 𝜎𝑓𝜁𝑓 ⊗ 𝐼 for 𝑛 ≥ 1, 0 ≤ 𝑛𝑜 ≤ 𝑁 − 1, 0 ≤ 𝑖 ≤ 𝑆.

Thus the infinitesimal generator of Ω is of the form

𝒬 =

⎛⎜⎜⎝
𝐴00 𝐴01

𝐴10 𝐴1 𝐴0

𝐴2 𝐴1 𝐴0

. . . . . . . . .

⎞⎟⎟⎠. (1)

Each matrix 𝐴0, 𝐴1, 𝐴2 are square matrix of order 𝑝 and matrices 𝐴00, 𝐴01, 𝐴10 are of order 𝑞 × 𝑞, 𝑞 × 𝑝, 𝑝× 𝑞
respectively where 𝑝 = (𝑁 + 1)[(𝑆 + 𝐾)𝑏 + 1]𝑎 and 𝑞 = (𝑁 + 1)(𝑆 + 𝐾 + 1)𝑎 where

𝐴0 =

⎛⎜⎜⎝
𝐿0

𝐿
. . .

𝐿

⎞⎟⎟⎠, 𝐴2 =

⎛⎜⎜⎜⎜⎝
𝑀0

𝑀1

𝑀
. . .

𝑀

⎞⎟⎟⎟⎟⎠, 𝐴1 =

⎛⎜⎜⎜⎜⎝
𝐺0 𝐺

𝐺1 𝐺2

. . . . . .
𝐺1 𝐺2

𝐺3

⎞⎟⎟⎟⎟⎠,

𝐴01 =

⎛⎜⎜⎜⎝
�̂�0

�̂�
. . .

�̂�

⎞⎟⎟⎟⎠, 𝐴10 =

⎛⎜⎜⎜⎜⎜⎝
�̂�0

�̂�1

�̂�
. . .

�̂�

⎞⎟⎟⎟⎟⎟⎠, 𝐴00 =

⎛⎜⎜⎜⎜⎜⎝
�̂�0 �̂�

�̂�1 �̂�2

. . . . . .
�̂�1 �̂�2

�̂�3

⎞⎟⎟⎟⎟⎟⎠.

The sub-matrices are completely defined in Appendix A.

2.1. Stability condition

Let 𝜋 be the steady state probability vector of 𝐴 = 𝐴0 + 𝐴1 + 𝐴2. Then

𝜋𝐴 = 0, 𝜋e = 1. (2)

From (2) we have

𝜋0𝐻0 + 𝜋1𝑀1 = 0,
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𝜋0𝐺 + 𝜋1𝐻1 + 𝜋2𝑀 = 0,

𝜋𝑖−1𝐺2 + 𝜋𝑖𝐻1 + 𝜋𝑖+1𝑀 = 0, 2 ≤ 𝑖 ≤ 𝐾 − 1
𝜋𝐾−1𝐺2 + 𝜋𝐾𝐻2 = 0

where

𝐻0 = 𝐿0 + 𝑀0 + 𝐺0,

𝐻1 = 𝐿 + 𝐺1,

𝐻2 = 𝐿 + 𝐺3.

Solving the above system of equations we get

𝜋𝑖 = 𝜋𝑖−1𝒰𝑖, 1 ≤ 𝑖 ≤ 𝐾 (3)

where

𝒰𝑖 =

⎧⎪⎨⎪⎩
−𝐺[𝐻1 + 𝒰2𝑀 ]−1

, 𝑖 = 1,

−𝐺2[𝐻1 + 𝒰𝑖+1𝑀 ]−1
, 2 ≤ 𝑖 ≤ 𝐾 − 1

−𝐺2𝐻
−1
2 , 𝑖 = 𝐾.

From the normalizing condition 𝜋e = 1 we get

𝜋0

⎡⎣𝐼 +
𝐾∑︁

𝑗=1

𝑗∏︁
𝑖=1

𝒰𝑖

⎤⎦e = 1. (4)

Theorem 1. The queueing-inventory system under study is stable if and only if

𝜋0𝒱0e < 𝜋0𝒱1e (5)

where

𝒱0 = 𝐿0 +
𝐾∑︁

𝑗=1

𝑗∏︁
𝑖=1

𝒰𝑖𝐿

𝒱1 = 𝑀0 + 𝒰1𝑀1 +
𝐾∑︁

𝑗=1

𝑗∏︁
𝑖=2

𝒰𝑖𝑀.

Proof. The queueing-inventory system under study with the generator given in (1) is stable if and only if (see
[32])

𝜋𝐴0e < 𝜋𝐴2e. (6)

Note that from the elements of 𝐴0 and from 𝐴2, we get

𝜋𝐴0e = 𝜋0

⎡⎣𝐿0 +
𝐾∑︁

𝑗=1

𝑗∏︁
𝑖=1

𝒰𝑖𝐿

⎤⎦e and 𝜋𝐴2e = 𝜋0

⎡⎣𝑀0 + 𝒰1𝑀1 +
𝐾∑︁

𝑗=1

𝑗∏︁
𝑖=2

𝒰𝑖𝑀

⎤⎦e.

Now using (6) we get the stated result. �
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3. Steady state probability vector

Let x be the steady state probability vector of 𝒬. Then x must satisfy the set of equations

x𝒬 = 0, xe = 1. (7)

Thus the above set of equations reduce to:

x0𝐴00 + x1𝐴10 = 0,

x0𝐴01 + x1𝐴1 + x2𝐴2 = 0, (8)
x𝑛−1𝐴0 + x𝑛𝐴1 + x𝑛+1𝐴2 = 0, 𝑛 ≥ 2.

Under the assumption that the stability condition holds, we see that x is obtained as (see [32])

x𝑛 = x1𝑅
𝑛−1, 𝑛 ≥ 2 (9)

where 𝑅 is the minimal non-negative solution to the matrix quadratic equation:

𝑅2𝐴2 + 𝑅𝐴1 + 𝐴0 = 𝑂 (10)

and the boundary equations are given by

x0𝐴00 + x1𝐴10 = 0,

x0𝐴01 + x1[𝐴1 + 𝑅𝐴2] = 0. (11)

The normalizing condition (7) gives
x0

[︀
𝐼 +ℳ(𝐼 −𝑅)−1

]︀
e = 1 (12)

where ℳ = −𝐴01[𝐴1 + 𝑅𝐴2]−1
.

3.1. Some important system performance measures

In this section, we list a few system performance measures along with their formulae, to bring out the
qualitative nature of the model under study.

(1) Expected number of customers in the system:

𝐸𝑁 =
∞∑︁

𝑛=1

𝑛x𝑛e.

(2) Expected number of customers in the orbit:

𝐸𝑂 =
∞∑︁

𝑛=0

𝑁∑︁
𝑛𝑜=1

𝑛𝑜

[︃
𝑆∑︁

𝑖=0

x𝑛(0, 𝑛0, 𝑖) +
𝐾∑︁

𝑖𝑟=1

x𝑛(𝑖𝑟, 𝑛0, 𝑆)

]︃
e.

(3) Expected number of items in the main warehouse:

𝐸SMW =
∞∑︁

𝑛=0

[︃
𝑁∑︁

𝑛𝑜=0

𝑆∑︁
𝑖=1

𝑖x𝑛(0, 𝑛0, 𝑖) +
𝐾∑︁

𝑖𝑟=1

𝑁∑︁
𝑛𝑜=0

𝑆x𝑛(𝑖𝑟, 𝑛0, 𝑆)

]︃
e.

(4) Expected number of items in the special warehouse:

𝐸WRI =
∞∑︁

𝑛=0

𝐾∑︁
𝑖𝑟=1

𝑁∑︁
𝑛𝑜=0

𝑖𝑟x𝑛(𝑖𝑟, 𝑛0, 𝑆)e.
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(5) Expected rate of purchase:

𝐸PR =
1
𝜇′

∞∑︁
𝑛=1

𝑁∑︁
𝑛𝑜=0

[︃
𝑆∑︁

𝑖=1

x𝑛(0, 𝑛0, 𝑖) +
𝐾∑︁

𝑖𝑟=1

x𝑛(𝑖𝑟, 𝑛0, 𝑆)

]︃
e.

(6) Expected loss rate of customers due to no items in the system:

𝐸LR = 𝜑2𝜆

∞∑︁
𝑛=0

𝑁∑︁
𝑛𝑜=0

x𝑛(0, 𝑛0, 0)e.

(7) Expected returned rate of items

𝐸RI = 𝜎𝑟𝜁𝑟

∞∑︁
𝑛=0

𝑁∑︁
𝑛𝑜=0

[︃
𝑆∑︁

𝑖=0

x𝑛(0, 𝑛0, 𝑖) +
𝐾−1∑︁
𝑖𝑟=1

x𝑛(𝑖𝑟, 𝑛0, 𝑆)

]︃
e.

(8) Expected rate of customer feedback

𝐸CF = 𝜎𝑓𝜁𝑓

∞∑︁
𝑛=0

𝑁−1∑︁
𝑛𝑜=0

[︃
𝑆∑︁

𝑖=0

x𝑛(0, 𝑛0, 𝑖) +
𝐾∑︁

𝑖𝑟=1

x𝑛(𝑖𝑟, 𝑛0, 𝑆)

]︃
e.

(9) Expected retrial rate of feedback customers

𝐸𝑅 = 𝜂

𝑁∑︁
𝑛𝑜=1

𝑛𝑜

[︃
𝑆∑︁

𝑖=1

x0(0, 𝑛0, 𝑖) +
𝐾∑︁

𝑖𝑟=1

x0(𝑖𝑟, 𝑛0, 𝑆)

]︃
e.

(10) Expected rate of replenishment

𝐸RR = 𝜃

∞∑︁
𝑛=0

𝑁∑︁
𝑛𝑜=0

𝑆−1∑︁
𝑖=0

x𝑛(0, 𝑛0, 𝑖)e.

4. Numerical examples

In order to bring out the qualitative nature of the system under study, we provide some illustrative examples
in this section. We used the software MATLAB for solving the system numerically.

We assume that the maximum level of items in the special warehouse 𝐾 = 8, the capacity of orbit is 𝑁 = 6.
PH service process of customer is characterized by

𝛼 =
(︀

1 0
)︀
, 𝑇 =

(︂
−3 3
0 −3

)︂
for which the mean service time 𝜇′ = 0.6667.

For the arrival process, we consider the following two sets of values for 𝐷0 and 𝐷1 as follows.

(1) MAP with negative correlation (MAP−):

𝐷0 =

⎛⎝−1.00222 1.00222 0
0 −1.00222 0
0 0 −225 : 75

⎞⎠, 𝐷1 =

⎛⎝ 0 0 0
0.01002 0 0.9922
223.4925 0 2.2575

⎞⎠.
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Table 1. Effect of 𝜃: fix 𝑆 = 6, 𝑠 = 2, 𝜂 = 3, 𝜁𝑟 = 3, 𝜁𝑓 = 2, 𝜎𝑟 = 0.3, 𝜎𝑓 = 0.2.

MAP+

𝜃 𝐸𝑁 𝐸𝑂 𝐸SMW 𝐸WRI 𝐸PR 𝐸LR 𝐸RI 𝐸CF 𝐸𝑅 𝐸RR

0.5 25.5408 1.5279 4.7065 3.0464 1.0458 0.0031 0.8408 0.3642 0.3138 0.0737
1 25.1692 1.5232 4.8367 3.1845 1.0504 0.0010 0.8382 0.3654 0.3156 0.0992
1.5 25.1077 1.5224 4.8865 3.2433 1.0515 0.0005 0.8371 0.3657 0.3161 0.1147
2 25.1040 1.5223 4.9129 3.2774 1.0520 0.0003 0.8365 0.3658 0.3163 0.1252

MAP−

0.5 2.3719 2.7008 5.1977 1.0006 1.3057 0.0042 0.8946 0.3338 0.3234 0.1842
1 2.3426 2.6573 5.5850 1.1838 1.3162 0.0006 0.8937 0.3384 0.3285 0.2497
1.5 2.3399 2.6510 5.7216 1.2713 1.3175 0.0001 0.8933 0.3389 0.3291 0.2883
2 2.3394 2.6496 5.7907 1.3249 1.3178 0.0000 0.8931 0.3390 0.3292 0.3142

Table 2. Effect of 𝜂: fix 𝑆 = 6, 𝑠 = 2, 𝜃 = 2, 𝜁𝑟 = 3, 𝜁𝑓 = 2, 𝜎𝑟 = 0.3, 𝜎𝑓 = 0.2.

MAP+

𝜂 𝐸𝑁 𝐸𝑂 𝐸SMW 𝐸WRI 𝐸PR 𝐸LR 𝐸RI 𝐸CF 𝐸𝑅 𝐸RR

1.5 29.9445 1.9151 4.9056 3.2016 1.0778 0.0007 0.8398 0.3578 0.2934 0.1337
2 28.4406 1.7523 4.9076 3.2239 1.0701 0.0004 0.8387 0.3605 0.3009 0.1314
2.5 26.7941 1.6274 4.9102 3.2500 1.0613 0.0003 0.8376 0.3631 0.3086 0.1284
3 25.1040 1.5223 4.9129 3.2774 1.0520 0.0001 0.8365 0.3658 0.3163 0.1252

MAP−

1.5 2.3201 3.0586 5.7968 1.3333 1.3055 0.0001 0.8932 0.3270 0.3168 0.3073
2 2.3298 2.8637 5.7938 1.3271 1.3116 0.0000 0.8932 0.3330 0.3230 0.3109
2.5 2.3356 2.7376 5.7919 1.3252 1.3153 0.0000 0.8931 0.3366 0.3267 0.3129
3 2.3394 2.6496 5.7907 1.3249 1.3178 0.0000 0.8931 0.3390 0.3292 0.3142

(2) MAP with positive correlation (MAP+):

𝐷0 =

⎛⎝−1.00222 1.00222 0
0 −1.00222 0
0 0 −225 : 75

⎞⎠, 𝐷1 =

⎛⎝ 0 0 0
0.9922 0 0.01002
2.2575 0 223.4925

⎞⎠.

The above MAP processes will be normalized so as to have a specific arrival rate. However, these are qual-
itatively different in that they have different correlation structure. The arrival processes labeled MAP− has
negative correlation with value −0.4889 and MAP+ has positive correlation with value 0.4889 for two successive
inter-arrival times.

Tables 1–4 provide the effect of values of replenishment rate (𝜃), retrial rate (𝜂), returned rate of items (𝜁𝑟)
and rate of customer feedback (𝜁𝑓 ), the effect of MAP with positive and negative correlation on the expected
number of customers in the system and the orbit, expected number of items in the main warehouse and special
warehouse, expected returned rate of items, expected purchase rate, loss rate, rate of customer feedback, retrial
rate and rate of replenishment are indicated.

A quick look at Tables 1–4 reveal some interesting observations.

– As 𝜃 is increased, as expected, 𝐸LR decreases for both arrival processes. However, the rate of decrease is
much higher for MAP− but MAP+ indicating the role of (positive) correlated arrivals.

– While the expected inventory level in the main warehouse and special warehouse increase as 𝜃 increases, as
is to be expected, the rate of increase is pretty much the same for both arrival processes.
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Table 3. Effect of 𝜁𝑟: fix 𝑆 = 6, 𝑠 = 2, 𝜃 = 2, 𝜂 = 3, 𝜁𝑓 = 2, 𝜎𝑟 = 0.3, 𝜎𝑓 = 0.2.

MAP+

𝜁𝑟 𝐸𝑁 𝐸𝑂 𝐸SMW 𝐸WRI 𝐸PR 𝐸LR 𝐸RI 𝐸CF 𝐸𝑅 𝐸RR

1.5 25.1100 1.5225 4.7401 0.7938 1.0516 0.0005 0.4486 0.3657 0.3161 0.3919
2 25.1057 1.5224 4.8078 1.3367 1.0518 0.0004 0.5951 0.3657 0.3162 0.2893
2.5 25.1038 1.5223 4.8679 2.2044 1.0519 0.0004 0.7295 0.3657 0.3162 0.1960
3 25.1040 1.5223 4.9129 3.2774 1.0520 0.0003 0.8365 0.3658 0.3163 0.1252

MAP−

1.5 2.3400 2.6512 5.5710 0.3089 1.3175 0.0001 0.4498 0.3389 0.3291 0.6130
2 2.3397 2.6505 5.6454 0.5134 1.3176 0.0001 0.5995 0.3390 0.3292 0.5157
2.5 2.3395 2.6500 5.7192 0.8324 1.3177 0.0001 0.7482 0.3390 0.3292 0.4152
3 2.3394 2.6496 5.7907 1.3249 1.3178 0.0000 0.8931 0.3390 0.3292 0.3142

Table 4. Effect of 𝜁𝑓 : fix 𝑆 = 6, 𝑠 = 2, 𝜃 = 2, 𝜁𝑟 = 3, 𝜂 = 3, 𝜎𝑟 = 0.3, 𝜎𝑓 = 0.2.

MAP+

𝜁𝑓 𝐸𝑁 𝐸𝑂 𝐸SMW 𝐸WRI 𝐸PR 𝐸LR 𝐸RI 𝐸CF 𝐸𝑅 𝐸RR

0.5 24.8463 0.8415 4.9463 5.2082 0.8265 0.0002 0.6815 0.0957 0.0903 0.0702
1 24.9328 1.0267 4.9410 4.6314 0.9024 0.0001 0.7456 0.1887 0.1664 0.0791
1.5 25.0190 1.2492 4.9302 3.9571 0.9778 0.0001 0.7983 0.2790 0.2419 0.0969
2 25.1040 1.5223 4.9129 3.2774 1.0520 0.0001 0.8365 0.3658 0.3163 0.1252

MAP−

0.5 1.9734 0.4969 5.8891 2.4555 1.0931 0.0000 0.8665 0.0997 0.1025 0.1706
1 2.1168 1.1431 5.8523 1.9413 1.1815 0.0000 0.8809 0.1950 0.1917 0.2252
1.5 2.2418 1.9040 5.8182 1.5698 1.2581 0.0000 0.8889 0.2765 0.2690 0.2748
2 2.3394 2.6496 5.7907 1.3249 1.3178 0.0000 0.8931 0.3390 0.3292 0.3142

– As 𝜂 is increased, 𝐸SMW and 𝐸WRI increase for MAP+. However, both rates decrease for MAP−.
– We notice that the measures, 𝐸PR and 𝐸RR, decrease as 𝜂 increases for positive correlation. However, these

rates increase for MAP− when 𝜂 increases.
– As 𝜁𝑟 is increased, 𝐸WRI increases for both arrival processes. However, the rate of increase is much higher

for MAP+. Also, 𝐸RI increases for both arrival processes in similar way.
– Table 4 shows that 𝐸𝑁 , 𝐸𝑂, 𝐸PR, 𝐸RI, 𝐸CF, 𝐸𝑅, 𝐸RR increase as 𝜁𝑓 increases for both arrivals, as expected

line. However, 𝐸𝑆𝑊𝑀 , 𝐸WRI, 𝐸LR decrease.

4.1. Revenue (profit) function

Based on performance measures we define the following revenue (profit) function as:
𝐹 (𝜎𝑟, 𝜎𝑓 , 𝑆,𝐾, 𝑁) = 𝐶1𝐸PR + 𝐶2𝐸𝑅 + 𝐶3𝐸CF − (𝐶4𝐸RI + 𝐶5𝐸SMW + 𝐶6𝐸WRI + 𝐶7𝐸𝑁 + 𝐶8𝐸𝑂 + 𝐶9𝐸LR +
[K + 𝐶10(𝑆 − 𝑠)]𝐸RR) where

– 𝐶1 = revenue to the system due to per unit purchase (by a customer at the end of his service)
– 𝐶2 = revenue due to successful retrial of feedback customer per unit time
– 𝐶3 = revenue due to feedback of customer
– 𝐶4 = cost to the system from each return of purchased item
– 𝐶5 = holding cost per inventoried item in main warehouse per unit time
– 𝐶6 = holding cost per inventoried item in special warehouse per unit time
– 𝐶7 = holding cost per customer in the infinite queue
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Table 5. Effect of 𝑠 and 𝑆.

𝑆 MAP+ MAP−

𝑠 = 1

2 45.8330 94.2452
3 43.1744 91.1515
4 40.5941 88.8721
5 37.9698 86.5631
6 35.3344 84.2474

𝑠 = 2
3 43.3744 91.4108
4 40.8271 89.1366
5 38.2316 86.8319
6 35.6214 84.5198

𝑠 = 3
4 41.0600 89.4011
5 38.4934 87.1006
6 35.9084 84.7922

Table 6. Optimum value of 𝐾 and corresponding value of revenue.

𝐾
MAP+

𝐾
MAP−

𝑁 = 1 𝑁 = 2 𝑁 = 3 𝑁 = 1 𝑁 = 2 𝑁 = 3

2 30.0816 33.9563 35.7259 2 70.7476 74.1139 75.4695
3 32.6439 37.1579 39.1074 3 76.3020 80.0856 81.6224
4 32.5564 37.5180 39.6215 4 78.4654 82.6679 84.3991
5 31.3932 36.6251 38.8383 5 78.8423 83.4557 85.3936
6 29.7544 35.1338 37.4125 6 78.1595 83.1668 85.3176
7 27.8841 33.3372 35.6474 7 76.8023 82.1797 84.5436
8 25.8886 31.3743 33.6934 8 74.9977 80.7172 83.2897
9 23.8170 29.3135 31.6280 9 72.8890 78.9203 81.6934

– 𝐶8= holding cost per customer in the finite orbit
– 𝐶9 = cost due to customer lost per unit time
– K = fixed cost of delivery service
– 𝐶10 = carriage cost of the delivery service per item.

In order to study the effect of different parameters on profit function we first take the values

(𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶7, 𝐶8, 𝐶9,K, 𝐶10) = ($100, $25, $5, $10, $2, $3, $1, $2, $15, $110, $8).

We assign the following values to the parameters: 𝐾 = 9, 𝑁 = 6, 𝜑1 = 0.6, 𝜃 = 2, 𝜂 = 3, 𝜁𝑟 = 3, 𝜁𝑓 = 2, 𝜎𝑟 =
0.5, 𝜎𝑓 = 0.2. For different values of 𝑆 and 𝑠, the expected profit is calculated and presented in Table 5. This
table shows that the profit function decreases when 𝑆 increases and increases for 𝑠.

Table 6 represents the revenue to the system as a function of 𝐾 and 𝑁 for MAP with positive and negative
correlations (fix 𝑠 = 2, 𝑆 = 6). Whereas MAP with positive correlation provides lower revenue, MAP with
negative correlation gives much higher revenue. In both cases the cost function behaves as a concave function
(see Figs. 2 and 3).

From Table 7 we obtain as 𝜎𝑟 is increased, as expected, revenue increases then decreases for both arrival
processes (fix 𝑆 = 7, 𝑠 = 2, 𝑁 = 6, 𝐾 = 9). However, the rate of increase is much higher for MAP+ (see Fig. 4).
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Figure 2. Effect of 𝐾, 𝑁, MAP+.

Figure 3. Effect of 𝐾, 𝑁, MAP−.

Table 7. Effect of 𝜎𝑟.

𝜎𝑟 MAP+ MAP−

0 −40.2524 −19.3677
0.1 −11.4736 4.8640
0.2 −1.4760 30.1947
0.3 −0.3610 48.8050
0.4 0.1320 53.0792
0.5 0.4093 51.7235
0.6 0.3962 50.3904
0.7 0.2174 49.5696
0.8 −0.0216 49.0581
0.9 −0.2612 48.7173
1 −0.4754 48.4759

Table 8. Effect of 𝜂, 𝜃, 𝜁𝑟, 𝜁𝑓 on 𝐹 (𝜎𝑟, 𝜎𝑓 , 𝑆,𝐾, 𝑁).

𝜃 = 2, 𝜁𝑟 = 3, 𝜁𝑓 = 2 𝜂 = 3, 𝜁𝑟 = 3, 𝜁𝑓 = 2 𝜃 = 2, 𝜂 = 3, 𝜁𝑓 = 2 𝜃 = 2, 𝜁𝑟 = 3, 𝜂 = 3

𝜂 MAP+ MAP− 𝜃 MAP+ MAP− 𝜁𝑟 MAP+ MAP− 𝜁𝑓 MAP+ MAP−

1 31.9839 82.3915 1 40.1856 87.4062 1 13.4894 30.5611 1 22.5403 74.5599
2 35.6240 85.0651 2 38.9844 86.0034 2 37.9831 68.1502 2 38.9844 86.0034
3 38.9844 86.0034 3 38.3361 85.2894 3 38.9844 86.0034 3 53.8385 90.3595
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Figure 4. Effect of 𝜎𝑟 when 𝜎𝑓 = 0.

Figure 5. Effect of 𝜃.

Figure 6. Effect of 𝜂.

The effect of retrial, replenishment, return of item and customer feedback parameters on revenue function
are given in Table 8 (see Figs. 5–8) for MAP with positive and negative correlations. With increase in values
of 𝜂, 𝜁𝑟, 𝜁𝑓 , revenue increase in both cases; however, the effect of replenishment rate 𝜃 is increasing the revenue
decreases. These behaviours are on expected lines.

5. Special case

Next we consider a special case of the model described in Section 3. In this section customers arrive according
to a Poisson process of rate 𝜆. To deliver one unit of the item to the customer in service, it requires an
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Figure 7. Effect of 𝜁𝑟.

Figure 8. Effect of 𝜁𝑓 .

exponentially distributed amount of time with parameter 𝜇. Other assumptions remain the same as described
above in Section 3.

Let 𝑁𝑆(𝑡), 𝑁𝑂(𝑡), 𝐼𝑟(𝑡), and 𝐼(𝑡) denote, respectively, the number of customers in the system including the one
in service, the number of feedback customers in the orbit, the number of items in the special warehouse (WRI)
and the number of items in the main warehouse at time 𝑡. The process Ω̃ = {(𝑁𝑆(𝑡), 𝐼𝑟(𝑡), 𝑁𝑂(𝑡), 𝐼(𝑡)), 𝑡 ≥ 0}
is a CTMC with the state space given by

{(𝑛, 0, 𝑛𝑜, 𝑖), 𝑛 ≥ 0, 0 ≤ 𝑛𝑜 ≤ 𝑁, 0 ≤ 𝑖 ≤ 𝑆}
⋃︁
{(𝑛, 𝑖𝑟, 𝑛𝑜, 𝑆), 𝑛 ≥ 0, 1 ≤ 𝑖𝑟 ≤ 𝐾, 0 ≤ 𝑛𝑜 ≤ 𝑁}.

The transition rates are:

(i) Transitions due to the arrival:

(𝑛, 0, 𝑛0, 0) → (𝑛 + 1, 0, 𝑛0, 0) : rate 𝜑1𝜆 for 𝑛 ≥ 0, 0 ≤ 𝑛𝑜 ≤ 𝑁
(𝑛, 0, 𝑛0, 𝑖) → (𝑛 + 1, 0, 𝑛0, 𝑖) : rate 𝜆 for 𝑛 ≥ 0, 0 ≤ 𝑛𝑜 ≤ 𝑁, 1 ≤ 𝑖 ≤ 𝑆
(𝑛, 𝑖𝑟, 𝑛0, 𝑆) → (𝑛 + 1, 𝑖𝑟, 𝑛0, 𝑆) : rate 𝜆 for 𝑛 ≥ 0, 1 ≤ 𝑖𝑟 ≤ 𝐾, 0 ≤ 𝑛𝑜 ≤ 𝑁.

(ii) Transitions due to retrial:

(0, 0, 𝑛𝑜, 𝑖) → (1, 0, 𝑛𝑜 − 1, 𝑖) : rate 𝑛𝑜𝜂 for 1 ≤ 𝑛𝑜 ≤ 𝑁, 1 ≤ 𝑖 ≤ 𝑆
(0, 𝑖𝑟, 𝑛0, 𝑆) → (1, 𝑖𝑟, 𝑛0 − 1, 𝑆) : rate 𝑛𝑜𝜂 for 1 ≤ 𝑖𝑟 ≤ 𝐾, 1 ≤ 𝑛𝑜 ≤ 𝑁.

(iii) Transitions due to service completion:

(𝑛, 0, 𝑛𝑜, 𝑖) → (𝑛− 1, 0, 𝑛𝑜, 𝑖− 1) : rate 𝜇 for 𝑛 ≥ 1, 0 ≤ 𝑛𝑜 ≤ 𝑁, 1 ≤ 𝑖 ≤ 𝑆
(𝑛, 𝑖𝑟, 𝑛0, 𝑆) → (𝑛− 1, 𝑖𝑟 − 1, 𝑛0, 𝑆) : rate 𝜇 for , 𝑛 ≥ 1, 1 ≤ 𝑖𝑟 ≤ 𝐾, 0 ≤ 𝑛𝑜 ≤ 𝑁.
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(iv) Transitions due to replenishment:

(𝑛, 0, 𝑛𝑜, 𝑖) → (𝑛, 0, 𝑛𝑜, 𝑆) : rate 𝜃 for 𝑛 ≥ 0, 0 ≤ 𝑛𝑜 ≤ 𝑁, 0 ≤ 𝑖 ≤ 𝑆 − 1.

(v) Transitions due to return of items:

(𝑛, 0, 𝑛𝑜, 𝑖) → (𝑛, 0, 𝑛𝑜, 𝑖 + 1) : rate 𝜎𝑟𝜁𝑟 for 𝑛 ≥ 0, 0 ≤ 𝑛𝑜 ≤ 𝑁, 0 ≤ 𝑖 ≤ 𝑆 − 1
(𝑛, 𝑖𝑟, 𝑛𝑜, 𝑆) → (𝑛, 𝑖𝑟 + 1, 𝑛𝑜, 𝑆) : rate 𝜎𝑟𝜁𝑟 for 𝑛 ≥ 0, 0 ≤ 𝑖𝑟 ≤ 𝐾 − 1, 0 ≤ 𝑛𝑜 ≤ 𝑁.

(vi) Transitions due to feedback of customers:

(𝑛, 0, 𝑛𝑜, 𝑖) → (𝑛, 0, 𝑛𝑜 + 1, 𝑖) : rate 𝜎𝑓𝜁𝑓 for 𝑛 ≥ 0, 0 ≤ 𝑛𝑜 ≤ 𝑁 − 1, 0 ≤ 𝑖 ≤ 𝑆
(𝑛, 𝑖𝑟, 𝑛𝑜, 𝑆) → (𝑛, 𝑖𝑟, 𝑛𝑜 + 1, 𝑆) : rate 𝜎𝑓𝜁𝑓 for 𝑛 ≥ 0, 1 ≤ 𝑖𝑟 ≤ 𝐾, 0 ≤ 𝑛𝑜 ≤ 𝑁 − 1.

Thus the infinitesimal generator of Ω̃ is of the form

�̃� =

⎛⎜⎜⎜⎜⎝
𝐴00 𝐴01

𝐴2 𝐴1 𝐴0

𝐴2 𝐴1 𝐴0

. . . . . . . . .

⎞⎟⎟⎟⎟⎠. (13)

Each matrix 𝐴00, 𝐴01, 𝐴0, 𝐴1, 𝐴2 is square matrix of order (𝑁 + 1)(𝑆 + 𝐾 + 1) where

𝐴0 =

⎛⎜⎜⎜⎝
ℒ0

𝜆𝐼

. . .
𝜆𝐼

⎞⎟⎟⎟⎠, 𝐴2 =

⎛⎜⎜⎜⎜⎜⎜⎝
ℳ0

ℳ1

𝜇𝐼

. . .
𝜇𝐼

⎞⎟⎟⎟⎟⎟⎟⎠, 𝐴1 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝒢00 𝒢0

𝒢1 𝜎𝑟𝜁𝑟𝐼

. . . . . .
𝒢1 𝜎𝑟𝜁𝑟𝐼

𝒢′1

⎞⎟⎟⎟⎟⎟⎟⎠,

𝐴01 =

⎛⎜⎜⎜⎜⎝
ℒ̂0

ℒ̂
. . .

ℒ̂

⎞⎟⎟⎟⎟⎠, 𝐴00 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝒢00 𝒢0

𝒢1 𝜎𝑟𝜁𝑟𝐼

. . . . . .

𝒢1 𝜎𝑟𝜁𝑟𝐼

𝒢′1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and all other sub-matrices are given in Appendix B.

5.1. Stability condition

Let �̃� be the steady state probability vector of

𝐴 = 𝐴0 + 𝐴1 + 𝐴2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ℋ0 𝒢0

ℳ1 ℋ1 𝜎𝑟𝜁𝑟𝐼

𝜇𝐼 ℋ1 𝜎𝑟𝜁𝑟𝐼

. . . . . . . . .
𝜇𝐼 ℋ1 𝜎𝑟𝜁𝑟𝐼

𝜇𝐼 ℋ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then
�̃�𝐴 = 0, �̃�e = 1. (14)
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From (14) we have

�̃�0ℋ0 + �̃�1ℳ1 = 0,

�̃�0𝒢0 + �̃�1ℋ1 + 𝜇�̃�2𝐼 = 0,

𝜎𝑟𝜁𝑟�̃�𝑖−1𝐼 + �̃�𝑖ℋ1 + 𝜇�̃�𝑖+1𝐼 = 0, 2 ≤ 𝑖 ≤ 𝐾 − 1
𝜎𝑟𝜁𝑟�̃�𝐾−1𝐼 + �̃�𝐾ℋ2 = 0

where

ℋ0 =ℒ0 + 𝒢00 +ℳ0,

ℋ1 =𝜆𝐼 + 𝒢1,

ℋ2 =𝜆𝐼 + 𝒢′1.

Solving the above system of equations (see Appendix C) we get

�̃�𝑖 = �̃�𝐾𝒰𝑖, 0 ≤ 𝑖 ≤ 𝐾 − 1 (15)

where

𝒰𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−
[︁
𝒰1ℳ1

]︁
ℋ−1

0 , 𝑖 = 0,

−
[︁
𝒰𝑖+1ℋ1+𝜇𝒰𝑖+2

𝜎𝑟𝜁𝑟

]︁
, 1 ≤ 𝑖 ≤ 𝐾 − 3

−
[︁
𝒰𝐾−1ℋ1+𝜇𝐼

𝜎𝑟𝜁𝑟

]︁
, 𝑖 = 𝐾 − 2,

− ℋ2
𝜎𝑟𝜁𝑟

, 𝑖 = 𝐾 − 1.

From the normalizing condition �̃�e = 1 we get

�̃�𝐾

⎡⎣𝐼 +
𝐾−1∑︁
𝑗=0

𝒰𝑗

⎤⎦e = 1. (16)

Theorem 2. The queueing-inventory system under study is stable if and only if

�̃�𝐾𝒱0e < �̃�𝐾𝒱1e (17)

where

𝒱0 = 𝒰0ℒ0 + 𝜆

⎛⎝𝐾−1∑︁
𝑗=1

𝒰𝑗 + 𝐼

⎞⎠
𝒱1 = 𝒰0ℳ0 + 𝜇

⎛⎝𝐾−1∑︁
𝑗=1

𝒰𝑗 + 𝐼

⎞⎠.

Proof. The queueing-inventory system under study with the generator given in (13) is stable if and only if (see
[32])

�̃�𝐴0e < �̃�𝐴2e. (18)

Note that from the elements of 𝐴0 and from 𝐴2, we get

�̃�𝐴0e = �̃�0ℒ0e + 𝜆�̃�𝐾

⎡⎣𝐾−1∑︁
𝑗=1

𝒰𝑗 + 𝐼

⎤⎦e



QIS WITH RETURN OF PURCHASED ITEMS AND CUSTOMER FEEDBACK 1461

and

�̃�𝐴2e = �̃�0ℳ0e + �̃�1ℳ1e + 𝜇𝜋𝐾

⎡⎣𝐾−1∑︁
𝑗=2

𝒰𝑗 + 𝐼

⎤⎦e

= �̃�0ℳ0e + 𝜇𝜋𝐾

⎡⎣𝐾−1∑︁
𝑗=1

𝒰𝑗 + 𝐼

⎤⎦e.

Now using (18) we get the stated result. �

Note:
We have �̃�0ℒ0e = 𝜑1𝜆

∑︀𝑁
𝑛0=0 �̃�(0, 𝑛0, 0) + 𝜆

∑︀𝑁
𝑛0=0

∑︀𝑆
𝑖=1 �̃�(0, 𝑛0, 𝑖) and �̃�0ℳ0e = 𝜇

∑︀𝑁
𝑛0=0

∑︀𝑆
𝑖=1 �̃�(0, 𝑛0, 𝑖).

Hence the queueing-inventory system under study with 𝜑1 = 0 is stable if and only if 𝜆 < 𝜇 (see Appendix C).
This fact is very important: in the Poisson/exponential model, in the case of a lost sale scheme, the ergodicity
condition does not depend either on the capacity of warehouses, or on the lead time, or on the intensity of
repeated and feedback customers, or on the intensity of the return of purchased items and coincides with the
well-known ergodicity condition of a classical single-line queuing system. Same result was established for similar
models, see [14,26,33].

5.2. Steady state probability vector

Let x̃ be the steady state probability vector of �̃�. Then x̃ must satisfy the set of equations

x̃�̃� = 0, x̃e = 1. (19)

Thus the above set of equations reduce to:

x̃0𝐴00 + x̃1𝐴2 = 0,

x̃0𝐴01 + x̃1𝐴1 + x̃2𝐴2 = 0, (20)

x̃𝑛−1𝐴0 + x̃𝑛𝐴1 + x̃𝑛+1𝐴2 = 0, 𝑛 ≥ 2.

Under the assumption that the stability condition (18) holds, we see that x is obtained as (see [32])

x̃𝑛 = x̃1�̃�
𝑛−1, 𝑛 ≥ 2 (21)

where �̃� is the minimal non-negative solution to the matrix quadratic equation:

�̃�2𝐴2 + �̃�𝐴1 + 𝐴0 = 𝑂 (22)

and the boundary equations are given by

x̃0𝐴00 + x̃1𝐴2 = 0,

x̃0𝐴01 + x̃1

[︁
𝐴1 + �̃�𝐴2

]︁
= 0. (23)

The normalizing condition (19) gives

x̃0

[︁
𝐼 + ℳ̃(𝐼 − �̃�)−1

]︁
e = 1 (24)

where ℳ̃ = −𝐴01[𝐴1 + �̃�𝐴2]−1.
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5.3. Performance measures

(1) Expected number of customers in the system:

�̃�𝑁 =
∞∑︁

𝑛=1

𝑛x̃𝑛e.

(2) Expected number of customers in the orbit:

�̃�𝑂 =
∞∑︁

𝑛=0

𝑁∑︁
𝑛𝑜=1

𝑛𝑜

[︃
𝑆∑︁

𝑖=0

�̃�𝑛(0, 𝑛0, 𝑖) +
𝐾∑︁

𝑖𝑟=1

�̃�𝑛(𝑖𝑟, 𝑛0, 𝑆)

]︃
.

(3) Expected number of items in the main warehouse:

�̃�SMW =
∞∑︁

𝑛=0

[︃
𝑁∑︁

𝑛𝑜=0

𝑆∑︁
𝑖=1

𝑖�̃�𝑛(0, 𝑛0, 𝑖) +
𝐾∑︁

𝑖𝑟=1

𝑁∑︁
𝑛𝑜=0

𝑆�̃�𝑛(𝑖𝑟, 𝑛0, 𝑆)

]︃
.

(4) Expected number of items in the special warehouse:

�̃�WRI =
∞∑︁

𝑛=0

𝐾∑︁
𝑖𝑟=1

𝑁∑︁
𝑛𝑜=0

𝑖𝑟�̃�𝑛(𝑖𝑟, 𝑛0, 𝑆).

(5) Expected rate of purchase:

�̃�PR = 𝜇

∞∑︁
𝑛=1

𝑁∑︁
𝑛𝑜=0

[︃
𝑆∑︁

𝑖=1

�̃�𝑛(0, 𝑛0, 𝑖) +
𝐾∑︁

𝑖𝑟=1

�̃�𝑛(𝑖𝑟, 𝑛0, 𝑆)

]︃
.

(6) Expected loss rate of customers due to no items in the system:

�̃�LR = 𝜑2𝜆

∞∑︁
𝑛=0

𝑁∑︁
𝑛𝑜=0

�̃�𝑛(0, 𝑛0, 0).

(7) Expected returned rate of items

�̃�RI = 𝜎𝑟𝜁𝑟

∞∑︁
𝑛=0

𝑁∑︁
𝑛𝑜=0

[︃
𝑆∑︁

𝑖=0

�̃�𝑛(0, 𝑛0, 𝑖) +
𝐾−1∑︁
𝑖𝑟=1

�̃�𝑛(𝑖𝑟, 𝑛0, 𝑆)

]︃
.

(8) Expected rate of customer feedback

�̃�CF = 𝜎𝑓𝜁𝑓

∞∑︁
𝑛=0

𝑁−1∑︁
𝑛𝑜=0

[︃
𝑆∑︁

𝑖=0

�̃�𝑛(0, 𝑛0, 𝑖) +
𝐾∑︁

𝑖𝑟=1

�̃�𝑛(𝑖𝑟, 𝑛0, 𝑆)

]︃
.

(9) Expected retrial rate of feedback customers

�̃�𝑅 = 𝜂

𝑁∑︁
𝑛𝑜=1

𝑛𝑜

[︃
𝑆∑︁

𝑖=1

�̃�0(0, 𝑛0, 𝑖) +
𝐾∑︁

𝑖𝑟=1

�̃�0(𝑖𝑟, 𝑛0, 𝑆)

]︃
.

(10) Expected rate of replenishment

�̃�RR = 𝜃

∞∑︁
𝑛=0

𝑁∑︁
𝑛𝑜=0

𝑆−1∑︁
𝑖=0

�̃�𝑛(0, 𝑛0, 𝑖).
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Table 9. Optimum value of 𝐾 and corresponding value of revenue.

𝐾 𝑁 = 1 𝑁 = 2 𝑁 = 3

34 91.8035 94.8375 96.3941
35 91.8346 94.9212 96.5041
36 91.8478 94.9876 96.5974
37 91.8431 95.0370 96.6739
38 91.8206 95.0694 96.7337
39 91.7806 95.0849 96.7769
40 91.7231 95.0836 96.8036
41 91.6484 95.0657 96.8140
42 91.5565 95.0313 96.8081
43 91.4478 94.9805 96.7860
44 91.3222 94.9134 96.7479

Figure 9. Effect of 𝐾, 𝑁 .

5.4. Revenue function

Here we define the revenue function as 𝐹 (𝜎𝑟, 𝜎𝑓 , 𝑆,𝐾, 𝑁) = 𝐶1�̃�PR + 𝐶2�̃�𝑅 + 𝐶3�̃�CF− (𝐶4�̃�RI + 𝐶5�̃�SMW +
𝐶6�̃�WRI + 𝐶7�̃�𝑁 + 𝐶8�̃�𝑂 + 𝐶9�̃�LR + [K + 𝐶10(𝑆 − 𝑠)]�̃�RR) where 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶7, 𝐶8, 𝐶9, K, 𝐶10

are given in Section 4.1.
Fix (𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶7, 𝐶8, 𝐶9,K, 𝐶10) = ($100, $25, $5, $10, $2, $3, $1, $2, $15, $110, $8). Also assign

the following values to the parameters: 𝑆 = 18, 𝑠 = 7, 𝜑1 = 0.6, 𝜆 = 1, 𝜇 = 1.5, 𝜃 = 2, 𝜂 = 3, 𝜁𝑟 = 3, 𝜁𝑓 = 2, 𝜎𝑟 =
0.5, 𝜎𝑓 = 0.2. For different values of 𝐾 and 𝑁 , the expected profit is calculated and presented in Table 9. This
table shows that the profit function behaves as a concave function (see Fig. 9).

Take 𝑆 = 15, 𝑠 = 7, 𝐾 = 25, 𝑁 = 18, 𝜑1 = 0.6, 𝜆 = 1, 𝜇 = 1.5, 𝜃 = 2, 𝜂 = 3, 𝜁𝑟 = 3, 𝜁𝑓 = 2. Table 10 (see
Fig. 10) gives the effect of 𝜎𝑟 when 𝜎𝑓 = 0 and 𝜎𝑓 when 𝜎𝑟 = 0. In both cases the revenue increased initially
with the increased values of 𝜎𝑟 (or 𝜎𝑓 ), it later showed a decreasing behaviour (at 𝜎𝑟 = 0.6 (or 𝜎𝑓 = 0.6)).

6. Conclusion

In this paper, we propose an infinite single-server QIS model with return of purchased items sold from
unsatisfied primary customers and feedback from already served satisfied customers for the purchase of a new
batch of items. Primary customers form a MAP flow and their service times has PH-distribution. Unlike the
classical models of QISs, here it is assumed that the system has two warehouses: system main warehouse (SMW)
and warehouse for returned items (WRI). Both warehouses have finite volumes, and it is assumed that the cost
of holding one inventory item in different warehouses varies. Unlike primary customers, feedback customers are
generated by returning items and form a virtual orbit of finite size, with their sojourn time in orbit distributed
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Table 10. Optimum value of 𝜎𝑟, 𝜎𝑓 and corresponding value of revenue.

𝜎𝑓 = 0 𝜎𝑟 = 0
𝜎𝑟 𝐹 (𝜎𝑟, 𝜎𝑓 , 𝑆, 𝐾, 𝑁) 𝜎𝑓 𝐹 (𝜎𝑟, 𝜎𝑓 , 𝑆, 𝐾, 𝑁)

0 11.4255 0 11.4255
0.1 27.8028 0.1 22.8157
0.2 45.8604 0.2 33.5876
0.3 65.3894 0.3 42.8973
0.4 85.7771 0.4 49.6515
0.5 104.9475 0.5 53.1963
0.6 115.8214 0.6 54.1778
0.7 111.4602 0.7 53.9083
0.8 103.5883 0.8 53.2899
0.9 98.4366 0.9 52.6848
1 95.1014 1 52.1847

Figure 10. Effect of 𝜎𝑟, 𝜎𝑓 .

exponentially. The returned item is considered new and it goes directly to the SMW if at least one free space
there; otherwise, this item is sent to WRI. After completing service of each customer, one item is instantly sent
to the SMW from the WRI (if any). In SMW, for regular ordering known “Up to S replenishment policy is used
with positive lead time that has exponential distribution. When the stock level reaches the maximum value
due to returning of items, the system immediately cancels the regular order. A combination of lost sales and
backorder sales schemes is used, i.e. a new customer joins the queue even at zero inventory level with a positive
probability.

The mathematical model of the studied QIS is formulated as a multi-dimensional Markov chain with an infinite
state space. The stability condition for the constructed Markov chain is obtained. For the Poisson/exponential
model, it is shown that in the case of a lost sale scheme, the stability condition depends only on the intensity of
primary customers and their service time and does not depend on other parameters of the system. Under stability
conditions, system performance measures are calculated via steady-state probabilities, which are determined
using the matrix-geometric method. Unlike classic QISs, several new performance measures are defined here,
such as the expected level of inventory in the main and special warehouses, the expected rate of items returns,
the expected rate of repeated feedback customers, etc.

Using numerical examples, the behavior of performance measures is studied and analyzed depending on the
both load and structural parameters of the studied QIS. The maximization of the revenue function is also
performed numerically for both cases of MAP with positive and negative correlations.
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As a direction for further research, we can indicate a generalization of the obtained results for models of
perishable QIS, as well as a study of a similar model with an infinite volume of WRI (for simplicity this paper
assumes that returns are not allowed if the WRI is full).
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Appendix A.

Sub-matrices are
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⎛
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𝐿*0

𝐿*0

. . .

𝐿*0

⎞

⎟⎟⎟⎟⎟⎠
, 𝐿 =

⎛
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𝐼 ⊗𝐷1

𝐼 ⊗𝐷1

. . .

𝐼 ⊗𝐷1
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𝐿*0 =

⎛
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𝜑1𝐷1
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𝜎𝑟𝜁𝑟 ⊗ 𝐼

⎞

⎟⎟⎟⎟⎠
, 𝐺(1) =

⎛

⎜⎜⎜⎜⎝
𝜎𝑟𝜁𝑟 ⊗ 𝐼

⎞

⎟⎟⎟⎟⎠
,

𝐺(𝑁) =

⎛

⎜⎜⎜⎜⎝
𝜎𝑟𝜁𝑟 ⊗ 𝐼

⎞

⎟⎟⎟⎟⎠
, 𝐺2 =

⎛

⎜⎜⎜⎜⎜⎝

𝜎𝑟𝜁𝑟 ⊗ 𝐼

𝜎𝑟𝜁𝑟 ⊗ 𝐼

. . .

𝜎𝑟𝜁𝑟 ⊗ 𝐼

⎞

⎟⎟⎟⎟⎟⎠
,

𝐺1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

𝑣 𝜎𝑓𝜁𝑓 ⊗ 𝐼

𝑣 𝜎𝑓𝜁𝑓 ⊗ 𝐼

. . .
. . .

𝑣 𝜎𝑓𝜁𝑓 ⊗ 𝐼

𝑣′

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, 𝑣 = 𝑇 ⊕𝐷0 − (𝜎𝑟𝜁𝑟 + 𝜎𝑓𝜁𝑓 )⊗ 𝐼,

𝑣′ = 𝑇 ⊕𝐷0 − 𝜎𝑟𝜁𝑟 ⊗ 𝐼, 𝐺3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

𝑣0 𝜎𝑓𝜁𝑓 ⊗ 𝐼

𝑣0 𝜎𝑓𝜁𝑓 ⊗ 𝐼

. . .
. . .

𝑣0 𝜎𝑓𝜁𝑓 ⊗ 𝐼

𝑣′0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, 𝑣0 = 𝑇 ⊕𝐷0 − 𝜎𝑓𝜁𝑓 ⊗ 𝐼,

𝑣′0 = 𝑇 ⊕𝐷0.
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�̂�0 =

⎛

⎜⎜⎜⎜⎜⎜⎝

�̂�*0

�̂�1 �̂�*0

. . .

�̂�𝑁 �̂�*0

⎞

⎟⎟⎟⎟⎟⎟⎠
, �̂� =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

𝛼⊗𝐷1

𝜂𝛼⊗ 𝐼 𝛼⊗𝐷1

2𝜂𝛼⊗ 𝐼 𝛼⊗𝐷1

. . .
. . .

𝑁𝜂𝛼⊗ 𝐼 𝛼⊗𝐷1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

�̂�*0 =

⎛

⎜⎜⎜⎜⎜⎝

𝜑1𝐷1

𝛼⊗𝐷1

. . .

𝛼⊗𝐷1

⎞

⎟⎟⎟⎟⎟⎠
, �̂�𝑖 =

⎛

⎜⎜⎜⎜⎜⎝

0

𝑖𝜂𝛼⊗ 𝐼

. . .

𝑖𝜂𝛼⊗ 𝐼

⎞

⎟⎟⎟⎟⎟⎠
, 1 ≤ 𝑖 ≤ 𝑁

�̂�0 =

⎛

⎜⎜⎜⎜⎜⎜⎝

�̂�*
0

�̂�*
0

. . .

�̂�*
0

⎞

⎟⎟⎟⎟⎟⎟⎠
, �̂�1 =

(︁
�̂�

(0)
1 �̂�

(1)
1 ... �̂�

(𝑁)
1

)︁
,

�̂� =

⎛

⎜⎜⎜⎜⎜⎝

T0 ⊗ 𝐼

T0 ⊗ 𝐼

. . .

T0 ⊗ 𝐼

⎞

⎟⎟⎟⎟⎟⎠
, �̂�*

0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

T0 ⊗ 𝐼

T0 ⊗ 𝐼

. . .

T0 ⊗ 𝐼

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

�̂�
(0)
1 =

⎛

⎜⎜⎜⎜⎝

T0 ⊗ 𝐼
⎞

⎟⎟⎟⎟⎠
, �̂�

(1)
1 =

⎛

⎜⎜⎜⎜⎝

T0 ⊗ 𝐼

⎞

⎟⎟⎟⎟⎠
, �̂�

(𝑁)
1 =

⎛

⎜⎜⎜⎜⎝
T0 ⊗ 𝐼

⎞

⎟⎟⎟⎟⎠
,

�̂�0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̂�*00 �̂�**0

�̂�*01 �̂�**0

. . .
. . .

�̂�*0𝑁−1 �̂�**0

�̂�′*0𝑁

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, �̂� =

⎛

⎜⎜⎜⎜⎜⎜⎝

�̂�(0)

�̂�(1)

...

�̂�(𝑁)

⎞

⎟⎟⎟⎟⎟⎟⎠
,

�̂�*0𝑖 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̂�0 𝜎𝑟𝜁𝑟 ⊗ 𝐼 𝜃 ⊗ 𝐼

�̂�1𝑖 𝜎𝑟𝜁𝑟 ⊗ 𝐼 𝜃 ⊗ 𝐼

. . .
. . .

...

�̂�1𝑖 𝜎𝑟𝜁𝑟 ⊗ 𝐼 𝜃 ⊗ 𝐼

�̂�1𝑖 (𝜎𝑟𝜁𝑟 + 𝜃)⊗ 𝐼

�̂�2𝑖

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 0 ≤ 𝑖 ≤ 𝑁 − 1

�̂�0 = 𝜑2𝐷1 + 𝐷0 − (𝜎𝑟𝜁𝑟 + 𝜎𝑓𝜁𝑓 + 𝜃)⊗ 𝐼, �̂�1𝑖 = 𝑇 ⊕𝐷0 − (𝑖𝜂 + 𝜎𝑟𝜁𝑟 + 𝜎𝑓𝜁𝑓 + 𝜃)⊗ 𝐼,

�̂�2𝑖 = 𝑇 ⊕𝐷0 − (𝑖𝜂 + 𝜎𝑟𝜁𝑟 + 𝜎𝑓𝜁𝑓 )⊗ 𝐼,
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�̂�′*0𝑁 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̂�′0 𝜎𝑟𝜁𝑟 ⊗ 𝐼 𝜃 ⊗ 𝐼

�̂�′1𝑁 𝜎𝑟𝜁𝑟 ⊗ 𝐼 𝜃 ⊗ 𝐼

. . .
. . .

...

�̂�′1𝑁 𝜎𝑟𝜁𝑟 ⊗ 𝐼 𝜃 ⊗ 𝐼

�̂�′1𝑁 (𝜎𝑟𝜁𝑟 + 𝜃)⊗ 𝐼

�̂�′2𝑁

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

�̂�′0 = 𝜑2𝐷1 + 𝐷0 − (𝜎𝑟𝜁𝑟 + 𝜃)⊗ 𝐼, �̂�′1𝑁 = 𝑇 ⊕𝐷0 − (𝑁𝜂 + 𝜎𝑟𝜁𝑟 + 𝜃)⊗ 𝐼, �̂�′2𝑁 = 𝑇 ⊕𝐷0 − (𝑁𝜂 + 𝜎𝑟𝜁𝑟)⊗ 𝐼,

�̂�**0 =

⎛

⎜⎜⎜⎜⎜⎝

𝜎𝑓𝜁𝑓 ⊗ 𝐼

𝜎𝑓𝜁𝑓 ⊗ 𝐼

. . .

𝜎𝑓𝜁𝑓 ⊗ 𝐼

⎞

⎟⎟⎟⎟⎟⎠
, �̂�(0) =

⎛

⎜⎜⎜⎜⎝
𝜎𝑟𝜁𝑟 ⊗ 𝐼 0 0 ... 0

⎞

⎟⎟⎟⎟⎠
,

�̂�(1) =

⎛

⎜⎜⎜⎜⎝
0 𝜎𝑟𝜁𝑟 ⊗ 𝐼 0 ... 0

⎞

⎟⎟⎟⎟⎠
, �̂�(𝑁) =

⎛

⎜⎜⎜⎜⎝
0 0 ... 0 𝜎𝑟𝜁𝑟 ⊗ 𝐼

⎞

⎟⎟⎟⎟⎠
,

�̂�2 =

⎛

⎜⎜⎜⎜⎜⎝

𝜎𝑟𝜁𝑟 ⊗ 𝐼

𝜎𝑟𝜁𝑟 ⊗ 𝐼

. . .

𝜎𝑟𝜁𝑟 ⊗ 𝐼

⎞

⎟⎟⎟⎟⎟⎠
, �̂�1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

𝑣 𝜎𝑓𝜁𝑓 ⊗ 𝐼

𝑣1 𝜎𝑓𝜁𝑓 ⊗ 𝐼

. . .
. . .

𝑣𝑁−1 𝜎𝑓𝜁𝑓 ⊗ 𝐼

𝑣′𝑁

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

𝑣 = 𝑇 ⊕𝐷0 − (𝜎𝑟𝜁𝑟 + 𝜎𝑓𝜁𝑓 )⊗ 𝐼, 𝑣′𝑁 = 𝑇 ⊕𝐷0 − (𝑁𝜂 + 𝜎𝑟𝜁𝑟)⊗ 𝐼,

𝑣𝑖 = 𝑇 ⊕𝐷0 − (𝑖𝜂 + 𝜎𝑟𝜁𝑟)⊗ 𝐼, 1 ≤ 𝑖 ≤ 𝑁 − 1, �̂�3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

𝑣00 𝜎𝑓𝜁𝑓 ⊗ 𝐼

𝑣01 𝜎𝑓𝜁𝑓 ⊗ 𝐼

. . .
. . .

𝑣0𝑁−1 𝜎𝑓𝜁𝑓 ⊗ 𝐼

𝑣′0𝑁

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

𝑣0𝑖 = 𝑇 ⊕𝐷0 − (𝑖𝜂 + 𝜎𝑓𝜁𝑓 )⊗ 𝐼, 0 ≤ 𝑖 ≤ 𝑁 − 1, 𝑣′0𝑁 = 𝑇 ⊕𝐷0 −𝑁𝜂 ⊗ 𝐼.

Appendix B.

The sub-matrices are

ℒ0 =

⎛

⎜⎜⎜⎝

𝐿′

. . .

𝐿′

⎞

⎟⎟⎟⎠
, 𝐿′ =

⎛

⎜⎜⎜⎜⎜⎝

𝜑1𝜆

𝜆

. . .

𝜆

⎞

⎟⎟⎟⎟⎟⎠
, ℳ0 =

⎛

⎜⎜⎜⎝

𝑀 ′

. . .

𝑀 ′

⎞

⎟⎟⎟⎠
, 𝑀 ′ =

⎛

⎜⎜⎜⎜⎜⎝

0

𝜇

. . .

𝜇

⎞

⎟⎟⎟⎟⎟⎠
,

ℳ1 =
(︁

𝑀
(0)
1 𝑀

(1)
1 . . . 𝑀

(𝑁)
1

)︁
, 𝑀

(0)
1 =

⎛

⎜⎜⎜⎜⎝

𝜇
⎞

⎟⎟⎟⎟⎠
, 𝑀

(1)
1 =

⎛

⎜⎜⎜⎜⎝

𝜇

⎞

⎟⎟⎟⎟⎠
,
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𝑀
(𝑁)
1 =

⎛

⎜⎜⎜⎜⎝
𝜇

⎞

⎟⎟⎟⎟⎠
, 𝒢00 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̃�*0 𝜎𝑓𝜁𝑓𝐼

�̃�*0 𝜎𝑓𝜁𝑓𝐼

. . .
. . .

�̃�*0 𝜎𝑓𝜁𝑓𝐼

�̃�′*0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

𝒢0 =

⎛

⎜⎜⎜⎜⎜⎜⎝

�̃�(0)

�̃�(1)

...

�̃�(𝑁)

⎞

⎟⎟⎟⎟⎟⎟⎠
, �̃�*0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̃�0 𝜎𝑟𝜁𝑟 𝜃

�̃�1 𝜎𝑟𝜁𝑟 𝜃

. . .
. . .

...

�̃�1 𝜎𝑟𝜁𝑟 𝜃

�̃�1 (𝜎𝑟𝜁𝑟 + 𝜃)

�̃�2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

�̃�0 = −(𝜑1𝜆 + 𝜎𝑟𝜁𝑟 + 𝜎𝑓𝜁𝑓 + 𝜃), �̃�1 = −(𝜆 + 𝜇 + 𝜎𝑟𝜁𝑟 + 𝜎𝑓𝜁𝑓 + 𝜃), �̃�2 = −(𝜆 + 𝜇 + 𝜎𝑟𝜁𝑟 + 𝜎𝑓𝜁𝑓 ),

�̃�′*0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̃�′0 𝜎𝑟𝜁𝑟 𝜃

�̃�′1 𝜎𝑟𝜁𝑟 𝜃

. . .
. . .

...

�̃�′1 𝜎𝑟𝜁𝑟 𝜃

�̃�′1 (𝜎𝑟𝜁𝑟 + 𝜃)

�̃�′2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

�̃�′0 = −(𝜑1𝜆 + 𝜎𝑟𝜁𝑟 + 𝜃), �̃�′1 = −(𝜆 + 𝜇 + 𝜎𝑟𝜁𝑟 + 𝜃), �̃�′2 = −(𝜆 + 𝜇 + 𝜎𝑟𝜁𝑟),

�̃�(0) =

⎛

⎜⎜⎜⎜⎝
𝜎𝑟𝜁𝑟 0 0 . . . 0

⎞

⎟⎟⎟⎟⎠
, �̃�(1) =

⎛

⎜⎜⎜⎜⎝
0 𝜎𝑟𝜁𝑟 0 . . . 0

⎞

⎟⎟⎟⎟⎠
, �̃�(𝑁) =

⎛

⎜⎜⎜⎜⎝
0 0 . . . 0 𝜎𝑟𝜁𝑟

⎞

⎟⎟⎟⎟⎠
,

𝒢1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣 𝜎𝑓𝜁𝑓

𝑣 𝜎𝑓𝜁𝑓

. . .
. . .

𝑣 𝜎𝑓𝜁𝑓

𝑣′

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝑣 = −(𝜆 + 𝜇 + 𝜎𝑟𝜁𝑟 + 𝜎𝑓𝜁𝑓 ), 𝑣′ = −(𝜆 + 𝜇 + 𝜎𝑟𝜁𝑟),

𝒢′1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣0 𝜎𝑓𝜁𝑓

𝑣0 𝜎𝑓𝜁𝑓

. . .
. . .

𝑣0 𝜎𝑓𝜁𝑓

𝑣′0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝑣0 = −(𝜆 + 𝜇 + 𝜎𝑓𝜁𝑓 ), 𝑣′0 = −(𝜆 + 𝜇),

ℒ̂0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐿′

�̂�1 𝐿′

�̂�2 𝐿′

. . .
. . .

�̂�𝑁 𝐿′

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, �̂�𝑖 =

⎛

⎜⎜⎜⎜⎜⎝

0

𝑖𝜂

. . .

𝑖𝜂

⎞

⎟⎟⎟⎟⎟⎠
, 1 ≤ 𝑖 ≤ 𝑁, ℒ̂ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜆

𝜂 𝜆

2𝜂 𝜆

. . .
. . .

𝑁𝜂 𝜆

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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𝒢00 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̃�*00 𝜎𝑓𝜁𝑓𝐼

�̃�*01 𝜎𝑓𝜁𝑓𝐼

. . .
. . .

�̃�*0𝑁−1 𝜎𝑓𝜁𝑓𝐼

�̃�′*0𝑁

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

�̃�*0𝑖 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̃�0 𝜎𝑟𝜁𝑟 𝜃

�̃�𝑖1 𝜎𝑟𝜁𝑟 𝜃

. . .
. . .

...

�̃�𝑖1 𝜎𝑟𝜁𝑟 𝜃

�̃�𝑖1 (𝜎𝑟𝜁𝑟 + 𝜃)

�̃�𝑖2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 0 ≤ 𝑖 ≤ 𝑁 − 1

�̃�0 = −(𝜑1𝜆 + 𝜎𝑟𝜁𝑟 + 𝜎𝑓𝜁𝑓 + 𝜃), �̃�𝑖1 = −(𝑖𝜂 + 𝜆 + 𝜇 + 𝜎𝑟𝜁𝑟 + 𝜎𝑓𝜁𝑓 + 𝜃), �̃�𝑖2 = −(𝑖𝜂 + 𝜆 + 𝜇 + 𝜎𝑟𝜁𝑟 + 𝜎𝑓𝜁𝑓 ),

�̃�′*0𝑁 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̃�′𝑁0 𝜎𝑟𝜁𝑟 𝜃

�̃�′𝑁1 𝜎𝑟𝜁𝑟 𝜃

. . .
. . .

...

�̃�′𝑁1 𝜎𝑟𝜁𝑟 𝜃

�̃�′𝑁1 (𝜎𝑟𝜁𝑟 + 𝜃)

�̃�′𝑁2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, �̃�′𝑁0 = −(𝜑1𝜆 + 𝜎𝑟𝜁𝑟 + 𝜃),

�̃�′𝑁1 = −(𝑁𝜂 + 𝜆 + 𝜇 + 𝜎𝑟𝜁𝑟 + 𝜃), �̃�′𝑁2 = −(𝑁𝜂 + 𝜆 + 𝜇 + 𝜎𝑟𝜁𝑟), 𝒢1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣0 𝜎𝑓𝜁𝑓

𝑣1 𝜎𝑓𝜁𝑓

. . .
. . .

𝑣𝑁−1 𝜎𝑓𝜁𝑓

𝑣′𝑁

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

𝑣𝑖 = −(𝑖𝜂 + 𝜆 + 𝜇 + 𝜎𝑟𝜁𝑟 + 𝜎𝑓𝜁𝑓 ), 0 ≤ 𝑖 ≤ 𝑁 − 1, 𝑣′𝑁 = −(𝑁𝜂 + 𝜆 + 𝜇 + 𝜎𝑟𝜁𝑟),

𝒢′1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣00 𝜎𝑓𝜁𝑓

𝑣01 𝜎𝑓𝜁𝑓

. . .
. . .

𝑣0𝑁−1 𝜎𝑓𝜁𝑓

𝑣′0𝑁

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝑣0𝑖 = −(𝑖𝜂 + 𝜆 + 𝜇 + 𝜎𝑓𝜁𝑓 ), 0 ≤ 𝑖 ≤ 𝑁 − 1,

𝑣′0𝑁 = −(𝑁𝜂 + 𝜆 + 𝜇).

Appendix C.

𝜎𝑟𝜁𝑟�̃�𝐾−1𝐼 + �̃�𝐾ℋ2 = 0 =⇒ �̃�𝐾−1 = �̃�𝐾

(︂
− ℋ2

𝜎𝑟𝜁𝑟

)︂
= �̃�𝐾𝒰𝐾−1

𝜎𝑟𝜁𝑟�̃�𝐾−2𝐼 + �̃�𝐾−1ℋ1 + 𝜇�̃�𝐾𝐼 = 0 =⇒ �̃�𝐾−2 = �̃�𝐾

(︂
−𝒰𝐾−1𝐻1 + 𝜇𝐼

𝜎𝑟𝜁𝑟

)︂
= �̃�𝐾𝒰𝐾−2



QIS WITH RETURN OF PURCHASED ITEMS AND CUSTOMER FEEDBACK 1473

𝜎𝑟𝜁𝑟�̃�𝐾−3𝐼 + �̃�𝐾−2ℋ1 + 𝜇�̃�𝐾−1𝐼 = 0 =⇒ �̃�𝐾−3 = �̃�𝐾

(︂
−𝒰𝐾−2𝐻1 + 𝜇𝒰𝐾−1

𝜎𝑟𝜁𝑟

)︂
= �̃�𝐾𝒰𝐾−3.

Proceeding like this we get

𝜎𝑟𝜁𝑟�̃�1𝐼 + �̃�2ℋ1 + 𝜇�̃�3𝐼 = 0 =⇒ �̃�1 = �̃�𝐾

(︂
−𝒰2𝐻1 + 𝜇𝒰3

𝜎𝑟𝜁𝑟

)︂
= �̃�𝐾𝒰1

�̃�0ℋ0 + �̃�1ℳ1 = 0 =⇒ �̃�0 = �̃�𝐾

(︁
−𝒰1ℳ1

)︁
(ℋ0)

−1 = �̃�𝐾𝒰0

�̃�e = 1 =⇒ �̃�𝐾

[︁
𝐼 + 𝒰𝐾−1 + . . . + 𝒰0

]︁
e = 1 =⇒ �̃�𝐾

[︃

𝐼 +

𝐾−1∑︁

𝑗=0

𝒰𝑗

]︃

e = 1.

See the matrices 𝐴0, 𝐴2 given in Section 5 and ℒ0,ℳ0,ℳ1 in Appendix B.

�̃�𝐴0e = �̃�0ℒ0e + 𝜆

𝐾∑︁

𝑗=1

�̃�𝑗e = �̃�0ℒ0e + 𝜆�̃�𝐾

[︃
𝐾−1∑︁

𝑗=1

𝒰𝑗 + 𝐼

]︃

e

and

�̃�𝐴2e = �̃�0ℳ0e + �̃�1ℳ1e + 𝜇

𝐾∑︁

𝑗=2

𝜋𝑗e

= �̃�0ℳ0e + 𝜇�̃�1e + 𝜇𝜋𝐾

[︃
𝐾−1∑︁

𝑗=2

𝒰𝑗 + 𝐼

]︃

e

= �̃�0ℳ0e + 𝜇𝜋𝐾

[︃
𝐾−1∑︁

𝑗=1

𝒰𝑗 + 𝐼

]︃

e.

From the matrix ℒ0 we have �̃�0ℒ0e = 𝜑1𝜆
∑︀𝑁

𝑛0=0 �̃�(0, 𝑛0, 0) + 𝜆
∑︀𝑁

𝑛0=0

∑︀𝑆
𝑖=1 �̃�(0, 𝑛0, 𝑖)

=⇒ �̃�0ℒ0e = 𝜆

𝑁∑︁

𝑛0=0

𝑆∑︁

𝑖=1

�̃�(0, 𝑛0, 𝑖) if 𝜑1 = 0.

Hence �̃�𝐴0e = 𝜆
∑︀𝑁

𝑛0=0

∑︀𝑆
𝑖=1 �̃�(0, 𝑛0, 𝑖) + 𝜆�̃�𝐾

[︁∑︀𝐾−1
𝑗=1 𝒰𝑗 + 𝐼

]︁
e if 𝜑1 = 0

=⇒ �̃�𝐴0e = 𝜆

(︃
𝑁∑︁

𝑛0=0

𝑆∑︁

𝑖=1

�̃�(0, 𝑛0, 𝑖) + �̃�𝐾

[︃
𝐾−1∑︁

𝑗=1

𝒰𝑗 + 𝐼

]︃

e

)︃

.

From the matrix ℳ0, �̃�0ℳ0e = 𝜇
∑︀𝑁

𝑛0=0

∑︀𝑆
𝑖=1 �̃�(0, 𝑛0, 𝑖).

So �̃�𝐴2e = 𝜇
∑︀𝑁

𝑛0=0

∑︀𝑆
𝑖=1 �̃�(0, 𝑛0, 𝑖) + 𝜇𝜋𝐾

[︁∑︀𝐾−1
𝑗=1 𝒰𝑗 + 𝐼

]︁
e

=⇒ �̃�𝐴2e = 𝜇

(︃
𝑁∑︁

𝑛0=0

𝑆∑︁

𝑖=1

�̃�(0, 𝑛0, 𝑖) + 𝜋𝐾

[︃
𝐾−1∑︁

𝑗=1

𝒰𝑗 + 𝐼

]︃

e

)︃

if 𝜑1 = 0.

Let 𝒞 =
(︁∑︀𝑁

𝑛0=0

∑︀𝑆
𝑖=1 �̃�(0, 𝑛0, 𝑖) + 𝜋𝐾

[︁∑︀𝐾−1
𝑗=1 𝒰𝑗 + 𝐼

]︁
e
)︁

then

�̃�𝐴0e < �̃�𝐴2e =⇒ 𝜆𝒞 < 𝜇𝒞 =⇒ 𝜆 < 𝜇 if 𝜑1 = 0.
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