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Abstract
In this study, we delve into the spectral properties of a pencil of nonself-adjoint
second-order differential operators characterized by almost periodic potentials and
impulse conditions. Such operators arise in various physical models, particularly in
quantum mechanics, where they describe systems with discontinuities in their
potentials or boundary conditions. Understanding the spectrum of these operators is
crucial for comprehending the stability and dynamics of the associated physical
systems. By investigating the spectral gaps and accumulation points we aim to
contribute to the broader understanding of non-self-adjoint operator theory and its
applications in mathematical physics.
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1 Introduction
The study of spectral properties of the impulse Schrödinger equation is pivotal for under-
standing quantum systems influenced by external forces. By examining the eigenvalues
and eigenfunctions we can discern how perturbations affect the stability and dynamics
of quantum states. In particular, the presence of impulse actions introduces unique chal-
lenges that necessitate a careful analysis of the underlying mathematical framework. This
analysis not only enriches our theoretical understanding but also has practical implica-
tions in fields such as quantum mechanics and condensed matter physics. Moreover, the
inverse problem associated with the impulse Schrödinger equation seeks to reconstruct
the potential or perturbative influence from the observable spectral data. This aspect of
the study is crucial, as it connects theoretical predictions with empirical observations.
Solving the inverse problem requires sophisticated techniques combining spectral analysis
and operator theory, often leveraging tools like the Riesz basis and transformations of the
spectral data. In recent years, advancements in numerical methods and algorithms have
facilitated the exploration of these spectral properties, allowing for a more nuanced under-
standing of complex quantum systems. Through simulation and computational modeling,
researchers aim to identify the relationships between impulse phenomena and spectral
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characteristics, thereby broadening our comprehension of quantum behaviors under ex-
ternal perturbations.

In many practical scenarios, such as fluid dynamics, elasticity, and heat conduction,
jump conditions arise at interfaces where two distinct materials meet. These interfaces
can lead to abrupt changes in parameters such as density, thermal conductivity, or elas-
ticity, affecting the behavior and propagation of waves, stress, or temperature fields [1].
The mathematical formulation of such problems often necessitates the use of specialized
techniques, including the method of matched asymptotic expansions or the use of Green’s
functions tailored to accommodate the discontinuities present in the medium (see [2, 3]).
Researchers have developed a variety of numerical methods to tackle boundary value
problems characterized by jump conditions. Finite element methods (FEMs), for instance,
have been adapted to enhance the treatment of discontinuities by employing enriched in-
terpolation functions or interface tracking algorithms. Such advancements improve cal-
culation accuracy and expand the applicability of numerical simulations to complex ge-
ometries and material compositions prevalent in engineering and physics. Furthermore,
analytical solutions, although less common, provide valuable insights into the underly-
ing mechanics of jump conditions. Perturbation techniques and integral transforms often
reveal simplified models that establish benchmarks for validating numerical results. The
synergy between analytical and numerical approaches facilitates a deeper understanding
of the phenomena associated with discontinuous media, paving the way for innovative
applications in materials science and engineering (see, for example, [1–19]).

This study focuses on the spectral characteristics and the inverse issues associated with
the impulse Schrödinger equation. It seeks to explore the underlying properties of the
spectrum while also addressing the challenges presented by the inverse problem. By exam-
ining these aspects the paper intends to provide a deeper understanding of the dynamics
and implications of the impulse Schrödinger equation in various contexts. The research
will contribute to the existing literature by shedding light on both the spectral analysis
and the effective methodologies for tackling inverse problems, which have significant rel-
evance in the field of quantum mechanics and mathematical physics. Overall, the objective
is to enhance knowledge regarding this equation’s behavior and its potential applications
in theoretical and practical scenarios. Through rigorous investigation and analysis, this
paper aspires to add valuable insights and potentially pave the way for further develop-
ments in the study of impulse Schrödinger equations.

We consider the equation

–η′′ + 2μp(ξ )η + q (ξ) η = μ2ρ (ξ)η,
ξ ∈ [0, ξ0) ∪ ( ξ0,∞),

(1)

in the space L2 [0,∞) with the potentials p (ξ) ∈ P (ϒ)and q (ξ) ∈ Q (ϒ) where P (ϒ) and
Q (ϒ) are Besikovich almost-periodic functions classes, which means that in the L2 [0,∞)

domain, we consider potentials p (ξ) ∈ P (ϒ) and q (ξ) ∈ Q (ϒ), where the sets P(ϒ ) and
Q(ϒ ) consist of Besikovich almost-periodic functions. This indicates that

P (ϒ) = {ϱ : ϱ (ξ) =
∞∑︂

p=1

ϱpeiαυξ ;
∞∑︂

p=1

αp
⃓⃓
ϱp

⃓⃓
< ∞}, (2)
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Q (ϒ) = {σ : σ (ξ) =
∞∑︂

p=1

σpeiαpξ ;
∞∑︂

p=1

⃓⃓
σp

⃓⃓
< ∞}, (3)

and

ρ (x) =

{︄
1, ξ ≥ 0,
β2,β ≠ ±1, ξ < 0,

(4)

assuming that ϒ = {α1,α2, . . . ,αn, . . . }, αn > 0, p ∈ N , is a finite set of positive real numbers
that is closed under addition.

For this purpose, we consider the operator

L =
1

ρ (ξ)

[︃
–

d2

dξ 2 + 2μϱ (ξ) + σ (ξ)

]︃

generated by equation (16), the boundary condition

η (0) = 0, (5)

and defined for complex numbers αi, i = 1, 4, the momentum condition

[︄
η

(︁
ξ+

0
)︁

η′ (︁ξ+
0
)︁
]︄

= B

[︄
η

(︁
ξ–

0
)︁

η′ (︁ξ–
0
)︁
]︄

, B =

[︄
α1 α2

α3 α4

]︄
, det B ≠ 0. (6)

The point ξ = ξ0 is referred to as the impulse point of problem (1) with matrix B facili-
tating the extension of the solution for equation (1) from the interval [0, x0) to the interval
(x0,∞).

In the frequency domain, equation (1) captures the dynamics of wave propagation in
a one-dimensional nonconservative medium. Here μ signifies momentum, μ2 represents
energy, ϱ (ξ) Illustrates the combined effects of energy absorption and generation, and
σ (ξ ) pertains to the regeneration of force density.

Typically, the issue at hand is connected to discontinuities in the physical properties of
the medium [10].

Boundary value problems featuring discontinuities are commonly encountered in nu-
merous physical contexts, especially when dealing with materials that exhibit nonuni-
form characteristics (refer to [4–7, 10, 12–16]). A wide array of scholars has conducted
comprehensive research and further developed these types of issues (see, for instance,
[7–9, 17–19]).

The study of inverse spectral problems is fundamentally tied to the reconstruction of
differential operators from the spectral data associated with their eigenvalues and eigen-
functions. The central question driving this inquiry is whether we can uniquely determine
the potential of a Sturm–Liouville operator given its spectrum. This problem has historical
roots tracing back to work by mathematicians such as S. Krein and M. Gelfand, who laid
the groundwork for a rich field of research, leading to a deeper understanding of the rela-
tionships between analysis and geometry. One significant result in this domain is the com-
plete characterization of certain classes of Sturm–Liouville problems, where the spectrum
can indeed be shown to uniquely identify the associated potential. The methods employed
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often involve complex analysis, differential equations, and, increasingly, numerical tech-
niques that yield practical algorithms for extraction and reconstruction of these operators.
Furthermore, advances in inverse problems have implications reaching beyond pure math-
ematics, impacting physics, engineering, and even quantum mechanics, inviting interdis-
ciplinary collaboration. Moreover, the complexity of inverse spectral problems extends
to higher-order operators and more intricate boundary conditions, where the uniqueness
of recovery is not always guaranteed. Recent research has been delving into these more
complicated scenarios, revealing fascinating connections to topology and the overarching
geometry of spectral manifolds. As the field progresses, it continues to pose significant
challenges and stimulate innovative approaches, paving the way for future discoveries in
mathematical physics.

It is important to mention that Gasymov [11] examined the spectral properties asso-
ciated with the case Lη = μ2η at ϱ (ξ) = 0, ρ (ξ) ≡ 1, αp = p, provided that condition (3)
holds. Meanwhile, Orudzhev [20] addressed the scenario where ϱ (ξ) = 0 and ρ (ξ) ≡ 1,
also under condition (3). Additionally, several boundary value problems have been ana-
lyzed in [20–28]. The case αp = p, p ∈ N , was considered in [12]. Finally, we note that the
operator generated by a finite sum in (3) for p (x) = 0 and ρ (x) ≡ 1 was studied by Sarnak
[22].

Further, we will write p ≫ ν or p ≪ ν if αp > αν or αp < αν , respectively. The symbol∑︁
p:p>ν will be used for summing over all p such that αp > αν . We also will write p ⊕ ν = γ

if αp + αν = αγ .
For any μ0, the limit

∠ lim
μ→μ0

f (ξ ,μ) (μ – μ0) =

{︄
0,μ /∈ ϒ ,
fp (ξ) ,μ0 = αp, p ∈ ϒ ,

exists and is uniform in ξ .
In the subsequent discussion, the notation ∠ lim signifies that the limit is taken in a

nontangential direction as μ tends to μ0 in such a way that for any specified δ > 0, we have
the inequality

δ < arg (μ – μ0) < π – δ.

The functions ϱ (ξ) and σ (ξ) will be referred to as the potentials associated with the
equation

–η′′ + 2μϱ(ξ )η + σ (ξ)η = μ2ρ (ξ) η

or with the operator L.

2 Particular solution to the equation Ly = λ2y
Our objective within this section is to investigate the solutions to problem (1)—(4).

Let us denote by η– (ξ) and η+ (ξ) the solutions of (1), respectively, in the intervals [0, ξ0)
and (ξ0,∞):

{︄
η– (ξ) := η (ξ) , 0 ≤ ξ < ξ0,

η+ (ξ) := η (ξ) , ξ > ξ0.
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It is widely recognized [19] that within the range [0, ξ0) , equation (1) possesses solutions
χ (ξ ,μ) that can be regarded as equivalent to the solution of the corresponding integral
equation

χ (ξ ,μ) =
sinμξ

μ
+

∫︂ ξ

0

sinμ(ξ – η)

μ
[σ (ξ) + 2μϱ (ξ)]χ (η,μ)dη,

and satisfy following conditions:

χ (0,μ) = 0,χ ′ (0,μ) = 1.

In the interval [0, ξ0) , there exists a solution ω (ξ ,μ) that satisfies the conditions

ω (0,μ) = 1,ω′ (0,μ) = 0.

It is important to observe that the functions ω (ξ ,μ) and χ (ξ ,μ) are entire with respect
to the parameter μ. These functions fulfill the criteria set forth

W [ω (ξ ,μ) ,ψ (ξ ,μ)] = –1,μ ∈ C,

where by W[η1,η2] is the Wronskian of the functions η1 and η2.
Since all numbers

{︁
αp

}︁
p∈N are positive, it is possible to directly construct particular

solutions for (1).

Theorem 1 Equation (1) with potentials ϱ (ξ) ∈ P (ϒ) and σ (ξ) ∈ Q (ϒ) in the interval
(ξ0,∞) has a particular solution of the form

f + (ξ ,μ) = eiβμξ

⎛

⎝1 +
∞∑︂

p=1

V +
p eiαpξ +

∞∑︂

p=1

1
αp + 2βμ

∞∑︂

s=p
V +

pse
iαsξ

⎞

⎠

for all μ ∈ C+ = {μ ∈ C : Imμ > 0} that satisfies the asymptotics

∠ lim
ξ→∞ f + (ξ ,μ) e–iμβξ = 1.

It is obvious that for all λ ∈ C– = {λ ∈ C : Imμ < 0}, the function

f – (ξ ,μ) = e–iβμξ

⎛

⎝1 +
∞∑︂

p=1

V –
p eiαpξ +

∞∑︂

p=1

1
αp – 2βμ

∞∑︂

s=p
V –

pse
iαsξ

⎞

⎠

also is a solution that satisfies the asymptotics

∠ lim
ξ→∞ f – (ξ ,μ) e+iμβξ = 1.

Here the numbers V ±
p and V ±

pα are defined by the following recurrent formulae:

α2V ±
p + α

α∑︂

p=1

V ±
pα +

α–1∑︂

s=1

⎛

⎝σα–sV ±
s ± pα–s

s∑︂

p=1

V ±
ps

⎞

⎠ + σα = 0, (7)
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α(α – p)V ±
pα +

α–1∑︂

s=p
(σα–s ∓ p · ϱα–s)V ±

ps = 0, (8)

αV ±
α ±

α–1∑︂

s=1

pα–sV ±
s ± ϱα = 0, (9)

in which the series
∑︁∞

p=1
1
p
∑︁∞

α=p α

⃓⃓
⃓V ±

pα

⃓⃓
⃓ and

∑︁∞
p=1 p2

⃓⃓
⃓V ±

p

⃓⃓
⃓ are convergent.

It is straightforward to confirm that the Wronskian associated with these solutions up-
holds the subsequent relationship

W [f + (ξ ,μ) , f – (ξ ,μ)] = –2iμβ ,μ ∈ R.

Note that the functions f ±
p (ξ) defined as

f ±
p (ξ) = ∠ lim

μ→∓ αp
2β

(︁
αp ± 2βμ

)︁
f ± (ξ ,μ) =

∞∑︂

s=p
V ±

ps eiαsξ e–i αp
2 ξ

also are solutions of equation (16) for μ ≠ ± αp
2β

.

Since W [f ±
p (ξ) , f ∓

(︂
ξ ,∓ αp

2β

)︂
] = 0, we obtain that

f ±
n (ξ) = S±

p f ∓
(︃

ξ ,∓ αp

2β

)︃
. (10)

Comparing these relations, we will see that

S±
p = V±

pp.

Simple calculations show the following relation for the derivatives of the functions (10):

f ±′
p (ξ) = S±

p f ∓′
(︃

ξ ,∓ αp

2β

)︃
. (11)

3 Resolvent construction
To study the spectral characteristics of equations (1)–(4), let us construct its resolvent.

It is clear that the complete solutions of equation (1) for λ ∈ R can be derived by us-
ing linearly independent solutions within the intervals [0, x0) and (x0,∞) in the following
manner:

η (ξ ,μ) =

{︄
c1 (ξ)ω (ξ ,μ) + c2 (ξ)χ (ξ ,μ) , 0 ≤ ξ < ξ0,
c3 (ξ) f + (ξ ,μ) + c4 (ξ) f – (ξ ,μ) , ξ0 < ξ < ∞.

In this context, the coefficients are arranged so that the requirements specified in (5)
and (6) are satisfied for the solution η (ξ ,μ).

Now let us develop the resolvent for the operator pencil L. To achieve this, we will tackle
the following problem in L2 [0,∞):

–η′′ + 2μϱ(ξ )η + ϱ (ξ) η = μ2ρ (ξ)η + f (ξ) , ξ ≠ ξ0,
η (0) = 0,

where f (ξ) is any function in L2 [0,∞).
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To determine the coefficients cj (ξ) for j = 1, 4, we will analyze the system

c′
1 (ξ)ω (ξ ,μ) + c′

2 (ξ)χ (ξ ,μ) = 0,
c′

1 (ξ)ω (ξ ,μ) + c′
2 (ξ)χ (ξ ,μ) = f (ξ) .

Considering that W [ω (ξ ,μ) ,χ (ξ ,μ)] = –1, where μ ∈ C, to determine cj (ξ) for j = 1, 2,
we can use the following equations:

c1 (ξ) =
∫︁ ξ∗

0 χ (t,μ) f (t)dt + c1,

c2 (ξ) = –
∫︁ ξ0
ξ∗ ω (t,μ) f (t)dt + c2.

Comparably, we can determine the coefficients cj (ξ) for j = 3, 4 while considering that

W [f + (ξ ,μ) , f – (ξ ,μ)] = –2iμβ ,μ ∈ R,

from which we have

c3 (ξ) = – 1
2iβμ

∫︁ ξ∗∗
ξ0

f – (t,μ) f (t)dt + c3,

c4 (ξ) = 1
2iβλ

∫︁ ∞
ξ∗∗ f + (t,μ) f (t)dt + c4.

Thus we derive the solution to equation (1)

η (ξ ,μ) =

{︄
η– (ξ ,μ) , 0 ≤ ξ < ξ0,

η+ (ξ ,μ) , ξ0 < ξ < ∞,

where

η– (ξ ,μ) =
∫︁ ξ∗

0 ω (ξ ,μ)χ (t,μ) f (t)dt–
–

∫︁ x0
x∗ ω (t,μ)χ (ξ ,μ) f (t)dt + c1ω (ξ ,μ) + c2χ (ξ ,μ) ,

η+ (ξ ,μ) = – 1
2iβμ

∫︁ ξ∗∗
ξ0

f – (t,μ) f + (ξ ,μ) f (t)dt+
+ 1

2iβμ

∫︁ ∞
ξ∗∗ f + (t,μ) f – (ξ ,μ) f (t)dt + c4f – (ξ ,μ) + c3f + (ξ ,μ) .

Applying the initial condition η (0) = 0 leads us to conclude that c2 = 0, while the re-
quirement η (ξ ,μ) ∈ L2 [0,∞) results in c4 = 0. Consequently, for the functions

G– (ξ , t,μ) =

{︄
ω (t,μ)ψ (ξ ,μ) , ξ ≤ t,
ω (ξ ,μ)ψ (t,μ) , ξ ≥ t,

and

G+ (ξ , t,μ) = –
1

2iμβ

{︄
f + (ξ ,μ) f – (t,μ) , ξ ≤ t,
f + (t,μ) f – (ξ ,μ) , ξ ≥ t,

the overall resolution for the system of equations (1)–(4) can be formulated as

η (ξ ,μ) =

{︄∫︁ ξ0
0 G– (ξ , t,μ) f (t)dt + c1ω (ξ ,μ) , 0 ≤ ξ < ξ0,∫︁ ∞
ξ0

G+ (ξ , t,μ) f (t)dt + c3f + (ξ ,μ) , ξ0 < ξ < ∞,
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or for the function

G (ξ , t,μ) =

{︄
G– (ξ , t,μ) , 0 ≤ ξ < ξ0,
G+ (ξ , t,μ) , ξ > ξ0,

as

η (ξ ,μ) =
∫︂ ∞

0
G (ξ , t,μ) f (t)dt +

{︄
c1ω (ξ ,μ) , 0 ≤ ξ < x0,
c3f + (ξ ,μ) , x0 < ξ < ∞.

To find the coefficients c1 and c3, we use the condition
[︄

η
(︁
ξ+

0
)︁

η′ (︁ξ+
0
)︁
]︄

= B

[︄
η

(︁
ξ–

0
)︁

η′ (︁ξ–
0
)︁
]︄

.

Note that from the last relationship we have

[︄∫︁ ∞
0 G (ξ0, t,μ) f (t)dt + c3f + (ξ0,μ)

c3f +′
(ξ0,μ)

]︄

=

[︄
α1 α2

α3 α4

]︄[︄∫︁ ∞
0 G (ξ0, t,λ) f (t)dt + c1ω (ξ0,μ)

c1ω
′(ξ0,μ)

]︄
.

Then we obtain

∫︁ ∞
0 G (ξ0, t,μ) f (t)dt + c3f + (ξ0,μ) =

= α1
[︁∫︁ ∞

0 G (ξ0, t,μ) f (t)dt + c1ω (ξ0,μ)
]︁

+ α2c1ω
′ (ξ0,μ) ,

c3f +′
(ξ0,μ) = α2[

∫︂ ∞

0
G (ξ0, t,μ) f (t)dt + c1ϕ (ξ0,μ)] + α3c1ϕ

′ (ξ0,μ) .

The coefficients c1 and c3 are found from the following system of equations:

c3f + (ξ0,λ) – c1
[︁
α1ω (ξ0,λ) + α1ω

′ (ξ0,λ)
]︁

= (α1 – 1)
∫︁ ∞

0 G (ξ0, t,λ) f (t)dt,
c3f +′

(ξ0,λ) – c1
[︁
α3ω (ξ0,λ) + α4ω

′ (ξ0,λ)
]︁

= (α3 – 1)
∫︁ ∞

0 G (ξ0, t,λ) f (t)dt.

By using the Cramer rule for a system of equations we have

c3 =

⃓⃓
⃓⃓
⃓
(α1 – 1)

∫︁ ∞
0 G (ξ0, t,μ) f (t)dt [α1ω (ξ0,μ) + α1ω

′ (ξ0,μ)]

(α3 – 1)
∫︁ ∞

0 G (ξ0, t,λ) f (t)dt [α3ω (ξ0,μ) + α4ω
′ (ξ0,μ)]

⃓⃓
⃓⃓
⃓

–f + (ξ0,μ) [α3ω (ξ0,μ) + α4ω′ (ξ0,μ)] + f +′
(ξ0,μ) [α3ω (ξ0,μ) + α4ω′ (ξ0,μ)]

=

=

⃓⃓
⃓⃓
⃓
(α1 – 1)

∫︁ ∞
0 G (ξ0, t,μ) f (t)dt [α1ϕ (ξ0,μ) + α1ϕ

′ (ξ0,μ)]

(α3 – 1)
∫︁ ∞

0 G (ξ0, t,μ) f (t)d [α3ϕ (ξ0,μ) + α4ϕ
′ (ξ0,μ)]

⃓⃓
⃓⃓
⃓

ϒ (μ)
.

Similarly, we can show that

c1 =

⃓⃓
⃓⃓
⃓
f + (ξ0,μ) (α1 – 1)

∫︁ ∞
0 G (ξ0, t,μ) f (t)dt

f +′
(ξ0,μ) (α3 – 1)

∫︁ ∞
0 G (ξ0, t,μ) f (t)dt

⃓⃓
⃓⃓
⃓

ϒ (μ)
,
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where

ϒ (μ) = –f + (ξ0,μ) [α3ω (ξ0,μ) + α4ω
′ (ξ0,μ)]

+ f +′
(ξ0,μ) [α3ω (ξ0,μ) + α4ω

′ (ξ0,μ)].

Thus the overall resolution for issues (1)–(4) takes the form

η (ξ ,λ) =
∫︁ ∞

0 G (ξ , t,μ) f (t)dt+

+ 1
ϒ(μ)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⃓⃓
⃓⃓
⃓
f + (ξ0,λ) (α1 – 1)

∫︁ ∞
0 G (ξ0, t,μ) f (t)dt

f +′
(ξ0,λ) (α3 – 1)

∫︁ ∞
0 G (ξ0, t,μ) f (t)dt

⃓⃓
⃓⃓
⃓ω (ξ ,μ) ,

0 ≤ ξ < ξ0,⃓⃓
⃓⃓
⃓
(α1 – 1)

∫︁ ∞
0 G (ξ0, t,μ) f (t)dt [α1ϕ (ξ0,μ) + α1ϕ

′ (ξ0,μ)]

(α3 – 1)
∫︁ ∞

0 G (ξ0, t,μ) f (t)d [α3ϕ (ξ0,μ) + α4ϕ
′ (ξ0,μ)]

⃓⃓
⃓⃓
⃓ f + (ξ ,μ) ,

ξ0 < ξ < ∞.

Given that when Imμ = 0 and μ = ± αp
2 with p ∈ N , the primary set of solutions for

equation (1) consists of the functions f + (ξ ,μ) and f – (ξ ,μ), we deduce that

η (ξ ,μ) = C1ei Reμξ (1 +
∑︁∞

p=1 V +
n eiαpξ +

∑︁∞
p=1

1
αp+2μ

∑︁∞
s=p V +

pseiαsξ )+

+C2e–i Reμξ
(︂

1 +
∑︁∞

p=1 V –
n eiαpξ +

∑︁∞
p=1

1
αp–2μ

∑︁∞
s=p V –

pseiαsξ
)︂

.

Consequently, the solution to equation (1) exists within the space L2[0,∞) if and only if
C1 = C2 = 0 due to the periodic nature of its primary components. This indicates that the
operator pencil lacks purely real eigenvalues.

To establish that the residual spectrum of the operator pencil L is vacant, we investigate
the function g (ξ ,μ) ∈ L2[0,∞), which acts as a solution to the adjoint equation L∗ (μ) = 0
for the parameter μ ∈ C. Then

–g ′′ (ξ ,μ) + [2μϱ (ξ) + σ (ξ)]g (ξ ,μ) = μ2g (ξ ,μ) . (12)

Since (12) is an equation of type (1), we get that the point spectrum σϱ (L∗) = 0 or the
residual spectrum σr (L) = 0. This indicates that the operator pencil’s spectrum has a con-
tinuous part σ (L) = σc (L) and the operator L–1 is defined on a dense subset of L2[0,∞)

for μ ∈ C.
On the other hand, the points λ = ± αp

2 , n ∈ N , can exclusively be classified as simple
points for the operator pencil L–1. Given that the operator L lacks eigenvalues, these points
do not exhibit any singularities. onsequently, the spectrum of the operator pencil is en-
tirely comprised of a continuous spectrum. Therefore, this continuous spectrum spans
the range {–∞ < μ < ∞} and ϒ (μ) ≠ 0 when Imμ = 0.

All these details serve as evidence for the following theorem.

Theorem 2 The spectrum of the operator pencil L includes a finite set of eigenvalues char-
acterized as solutions to the equation M(μ) = 0, alongside a continuous spectrum that
spans the entire real line {–∞ < μ < ∞}. Within this continuous spectrum, there may ex-
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ist spectral singularities aligning with the values μ = ± αp
2 , where p is a natural number

(p ∈ N ).

It is straightforward to confirm that the function

G (x,λ) =

{︄
ψ (ξ ,μ) ,μ → 0+,
C (μ) f + (ξ ,μ) + D (μ) f – (ξ ,μ) , ξ → ∞,

where

C (λ) =
i

2μ
{f –′

(μ0,μ) [α1χ (ξ0,μ) + α2χ
′ (ξ0,μ)]

– f – (ξ0,μ) [α3χ (ξ0,μ) + α4χ
′ (ξ0,μ)]},

D (μ) =
i

2μ
{–f +′

(ξ0,μ) [α1χ (ξ0,μ) + α2χ
′ (ξ0,μ)]

+ f + (ξ0,μ) [α3χ (ξ0,μ) + α4χ
′ (ξ0,μ)]},

represents a resolution for issues (1)—(6) along the real number line. In the scenario where
ξ approaches infinity, we have

G (ξ ,μ) = C (μ) f + (ξ ,μ) + D (μ) f – (ξ ,μ) , ξ → ∞.

By dividing both sides of the final equation by the function D (μ) we derive the expres-
sion

U+ (ξ ,μ) =
C (μ)

D (μ)
f +
1 (ξ ,μ) + f –

1 (ξ ,μ) , Imμ = 0.

We call the function U+ (ξ ,μ) an eigenfunction of the considered problem (1)–(4).

4 Inverse problem
Definition 1 The function S (μ) = C(μ)

D(μ)
is called as reflection coefficient of problem

(1)–(4).

Inverse problem: Using the reflection coefficient S (μ), derive the potentials ϱ (ξ) ∈ P (G)

and σ (ξ) ∈ Q (G).
It is important to understand that the process of formulating the potentials ϱ (ξ) and

σ (ξ) is directly linked to determining the values of ϱp and σp. To accomplish this objective,
we employ

lim
μ→∓ αp

2β

(αp ± 2μβ)f ±(j)
(ξ ,μ) = S±

p f ∓(j)
(︃

ξ ,∓ αp

2β

)︃
,
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obtained from relations (10)–(11). Then we have

lim
μ→ αp

2β
(αp – 2μβ)S (μ) =

= – lim
μ→ αp

2β
(αp – 2μβ) f –′

(ξ0,μ)[α1χ(ξ0,μ)+α2χ ′(ξ0,μ)]–f –(ξ0,μ)[α3χ(ξ0,μ)+α4χ ′(ξ0,μ)]

f +′
(ξ0,λ)[α1χ(ξ0,μ)+α2χ ′(ξ0,μ)]–f +(ξ0,μ)[α3χ(ξ0,μ)+α4χ ′(ξ0,μ)]

=

= –
lim

μ→ αp
2β

(αp–2μβ)f –′
(ξ0,μ)[α1χ(ξ0,μ)+α2χ ′(ξ0,μ)]–lim

μ→ αp
2β

(αp–2μβ)f –(ξ0,μ)[α3χ(ξ0,μ)+α4χ ′(ξ0,μ)]

lim
μ→ αp

2β

f +′
(ξ0,μ)[α1χ(ξ0,μ)+α2χ ′(ξ0,μ)]–lim

μ→ αp
2β

f +(ξ0,μ)[α3χ(ξ0,μ)+α4χ ′(ξ0,μ)]
=

= –
S–

p f +′(︂
ξ0, αp

2β

)︂[︄
α1χ

(︂
ξ0, αp

2β

)︂
+α2χ

′
(︂
ξ0,

αp
2β

)︂]︄
–S–

p f +
(︂
ξ0, αp

2β

)︂[︄
α3χ

(︂
ξ0, αp

2β

)︂
+α4χ

′
(︂
ξ0,

αp
2β

)︂]︄

f +′(︂
ξ0, αp

2β

)︂[︄
α1χ

(︂
ξ0, αp

2β

)︂
+α2χ

′
(︂
ξ0,

αp
2β

)︂]︄
–f +

(︂
ξ0, αp

2β

)︂[︄
α3χ

(︂
ξ0, αp

2β

)︂
+α4χ

′
(︂
ξ0,

αp
2β

)︂]︄ = –S–
p .

Analogously, we can show that

lim
μ→– αp

2β

(αp + 2μβ)
1

S (μ)
= –S+

p .

So by using the reflection coefficient we find all the numbers S±
p = V ±

pp. Then again by
using a relation, which can be easily obtained from (11),

V (±)
νs+μ = V (±)

νν

⎛

⎝V (∓)
s +

s∑︂

p=1

V (∓)
pα

αp + αν

⎞

⎠ ,ν, s = 1, 2, 3, . . . ,

all numbers V ±
pα and V ±

α can be found effectively and uniquely.
Finally, we have the following theorem.

Theorem 3 All numbers V ±
pα , p > α, and V (∓)

α can be found by using the numbers V ±
pp

effectively and uniquely.

Proof Denote

ξ = it,μ = –iτ ,η (ξ) = Y (t) .

Then, using equation (1), we derive the following expression:

–Y ′′ (t) + 2τϱ (it)Y (t) + σ (it)Y (t) = τ 2Y (t) , (13)

where

ϱ (t) = iϱ (it) = i
∞∑︂

p=1

ϱpke–αpt ,σ (t) = –σ (it) = –
∞∑︂

p=1

σpe–αpt . (14)

Consequently, we derive equation (13), whose potentials diminish exponentially as tk

approaches infinity for k = 1, 2, 3. The method of analytical continuation enables us to
extract the relevant outcomes for equation (1) from those obtained for (13).

The solution to equation (13) with the potentials defined in (14) is given by

f± (t, τ) = e±iτ t

⎛

⎝1 +
∞∑︂

p=1

V ±
p e–αpt +

∞∑︂

p=1

∞∑︂

α=p

V ±
pα

iαp ± 2τ
e–αpt

⎞

⎠ , (15)
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and the numbers V ±
p , V ±

pα are determined by the recurrent formulae (7)–(9). Then from
(15) we obtain that

f± (t, τ) = Ω± (t) e±iτ t +
∫︂ ∞

t
K± (t, u) e±iτudu,

where K±(t, u), Ω± (t) are determined as

K± (t, u) =
1
2i

∞∑︂

p=1

∞∑︂

α=p
V ±

pαe–αt · e– (u–t)αp
2 ,Ω± (t) = 1 +

∞∑︂

p=1

V ±
p e–αpt .

After rewriting (11) as

∑︁∞
α=p V ±

pαe–αt · e
αpt

2 = V ±
pp =

= V ±
ppe–αpt/2

(︂
1 +

∑︁∞
ν=1 V ∓

ν e–αmt +
∑︁∞

ν=1
∑︁∞

s=ν
V∓

νs
i(αν+αp) e–αst

)︂ (16)

and denoting

z± (t + s) =
∞∑︂

ν=1

V ±
m e–(t+s)αν /2,

we have the following Marchenko-type equation:

K± (t, s) = Ω± (tk) z± (t + s) +
∫︂ ∞

t
K∓ (t, u) z± (u + s)du. (17)

It is commonly understood from courses on ordinary differential equations that

Ω±(t) = e∓i
∫︁ ∞
ξ ϱ(t)dt .

Using this fact, we have

Ω+(t) · Ω–(t) = 1. (18)

On the other hand, from (17) we easily obtain the relation

Ω+(t) – Ω–(t) =
∫︂ ∞

t
[K–(t, u) – K+(t, u)]du. (19)

The final equations (18)–(19) lead us to the following system of equations that helps us
determine the relationships V (±)

p,α and V (∓)
α :

V +
α + V –

α +
∑︁α–1

s=1 V +
s V –

α–s = 0,
V +

α – V –
α +

∑︁α
p=1

V +
pα–V –

pα

p = 0.
(20)

Now let us rewrite (20) as

V (±)
να+ν = V (±)

νν

⎛

⎝V (∓)
α +

α∑︂

p=1

V (∓)
pα

αp + αν

⎞

⎠ ,ν,α = 1, 2, 3, . . . . (21)
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Let Ṽ ±
να+ν , ν,α = 1, 2, 3, . . . , be a solution of equation (21) when V ±

α = 1 and V̂ ±
να+ν is a

solution of the same equation corresponding to the case V ±
α = ±i. Then

Ṽ ±
να+ν = V ±

νν

(︃
1 +

∑︁α
p=1

Ṽ∓
pα

p+ν

)︃
,

Ṽ ±
να+ν = V ±

νν

(︃
1 +

∑︁α
p=1

Ṽ∓
pα

p+ν

)︃
.

(22)

Let γ ±
να and β∓

να be the functions defined as

γ ±
να = 1

2

[︂
Ṽ ∓

να+ν ∓ iV̂ ∓
να+ν

]︂
,

β∓
να = 1

2

[︂
Ṽ ∓

να+ν ± iV̂ ∓
να+ν

]︂
.

Note that the quantities γ ±
να and β∓

να are determined uniquely using the recurrence re-
lations (22) for the known numbers V ±

νν . Then it is easy to obtain the relation

V ±
να+ν = V ∓

α · γ ±
να + V ±

α · β∓
να . (23)

Then using (23) in (20), we have

∑︁α
p=1

V +
pα–V –

pα

p =
∑︁α

p=1
V –

α γ +
pα–p+V +

α β–
pα–p–V +

α γ –
pα–p–V –

α β+
pα–p

p =

= V –
α

∑︁α
p=1

γ +
pα–p–β+

pα–p
p + V +

α

∑︁α
p=1

β–
pα–p–γ –

pα–p
p .

Finally, from (20) we obtain that

V +
α (1 –

α∑︂

p=1

β–
pα–p – γ –

pα–p

p
) – V –

α (1 –
α∑︂

p=1

γ +
pα–p – β+

pα–p

p
) = 0. (24)

Let us denote

Λα =
1 –

∑︁α
p=1

β–
pα–p–γ –

pα–p
n

1 –
∑︁α

p=1
γ +

pα–p–β+
pα–p

p

.

Then from (24) we obtain

V +
α = V –

α Λα (25)

and

V –
α (1 + Λα) +

α–1∑︂

s=1

V –
s V –

α–sΛs = 0. (26)

Formulas (25) and (26) uniquely determine all numbers V ±
α . Then from (23) all numbers

V ±
pα are determined uniquely and effectively. The theorem is proved. □



Annaghili et al. Boundary Value Problems         (2025) 2025:38 Page 14 of 16

5 Conclusions
In our investigation, we delve into the implications of complex potentials on the struc-
ture of eigenvalues and the nature of spectral singularities. The transfer matrix method,
renowned for its efficiency in handling Sturm–Liouville problems, allows us to track the
evolution of wave functions through the potential landscape. By establishing a relationship
between the transfer matrices and the corresponding complex potentials, we can derive
the conditions that lead us to the manifestation of spectral singularities in the eigenvalue
spectrum. Furthermore, the presence of almost periodicity in the complex potential in-
troduces a rich tapestry of behaviors not typically observed in real potential scenarios.
This aspect opens up avenues for a detailed analysis of the stability of spectral properties,
revealing how small perturbations in the potential can lead to significant changes in the
eigenvalue distribution. Our findings highlight how eigenvalues cluster or disperse un-
der specific configurations, emphasizing the complex interplay of periodicity and spectral
characteristics. Moreover, the implications of our findings extend to practical applications,
particularly in the realm of quantum mechanics, where the behavior of wave functions is
intricately linked to Sturm–Liouville problems. A precise characterization of eigenvalues
and eigenfunctions associated with these differential operators can lead to a better un-
derstanding of quantum systems, especially those with nonstandard potential landscapes.
This research not only enriches the theoretical framework but also has the potential to
influence the development of more sophisticated quantum models. Additionally, the con-
nection between impulsive Sturm–Liouville issues and wave dynamics merits further ex-
ploration. By investigating how impulsive effects alter wave propagation researchers can
gain insights into phenomena such as solitons and dispersive waves. This could pave the
way for novel approaches to controlling wave behavior in various media, which has signif-
icant implications in fields such as optics and acoustics. Finally, the incorporation of intri-
cate potentials in our analysis invites further inquiry into their mathematical properties
and physical relevance. As we advance our understanding of these complex interactions,
we open avenues for interdisciplinary research that could bridge theoretical mathematics
and applied physics, ultimately leading to new technologies and methodologies in solving
real-world problems [23–42]. Thus our work serves as a stepping stone toward a richer
comprehension of spectral theory and its applications across various scientific domains.
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