
JOURNAL OF BAKU ENGINEERING UNIVERSITY- MATHEMATICS AND COMPUTER SCIENCE 

2024. Volume 8, Number 2   Pages 112-119 

112 

 

 

UOT:517.925/.926;517.938 

DOI: https://doi.org/10.30546/09090.2025.01.2021 

EXISTENCE OF A SOLUTION TO A MIXED PROBLEM FOR A 

PARABOLIC EQUATION IN THE SENSE OF SHILOV 

YUSIF MAMMADOV, S.Z. AHMADOV 

Baku State University 

yusifmamedov@icloud.com 

salehakhmedov1973@gmail.com 

 

ARTICLE INFO ABSTRACT 

Article history: 

Received:2025-04-15 

Received in revised form: 2025-04-15 

Accepted:2025-04-15  

Available online  

Mixed problem for the fourth order  ordinary differential equation with general 

boundary conditions  is considered in present paper.  Soluion of the problem is 

found by the residue method. According to the scheame of this method the mixed 

problem is divided by two auxiliary- specrtal and Cauchy problems. After 

researching these two problems, solution of the considering mixed problem is 

found by residue series. It is shown , that solution of considering mixed problem 

surround not only  parabolic equations in the sense of Shilov, but also wider 

classes of equations.  
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Introduction 

The fourth-order harmonic Schrödinger equation is of great importance in the study of wave 

processes. These equations can be transformed into parabolic type equations in the sense of 

Petrovsky [4,5,11,12]. Additionally, there are more general forms of parabolic equations beyond 

those defined by Petrovsky, such as parabolic equations in the sense of Shilov [7,8,9,10]. 

 İn equations of this type, the inclusion of the potential function can alter the nature of the 

equation. In other words, wave processes can be analyzed within the framework of parabolic 

equations in the sense of Shilov, and the fourth-order equation we consider falls into this class. 

[1] 

For instance, examining the heat transfer process in rods of the same length but with 

different heat transfer coefficients can be represented by fourth-order partial differential 

equations [5,6]. 

The fourth-order parabolic equations in the sense of Shilov. 

Consider the following problem: 
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where 
mk ,

mk  ( 1, 4m  , 1,4k  ) are complex numbers, 𝑝 > 0 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟,  x  is complex 

valued functions. 

After application integral transformation  
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to the problem (1)-(3), we’ll get following spectral problem: 
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Roots of the characteristic equation in the sense of Birkhof corresponding to the equation (4) 

are found as follows [2]:  
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 To find  asymptotic of fundamental solutions of the equation (4) let’s devide a complex 

plane    into eight sectors by the following way [7]:   
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At the each  sectors  8,1kS
k

  at large values of     the asymptotics of  fundamental 

solution of the equation  (4) have the following representation [6, 8]: 
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Green function of the spectral problem (4), (5) has the form [4] : 

 
 
 









,,
,,

x
xG  ;  

mS  , 1,8.m                                                                   (7) 



Elmaddin Huseynov, Ali Hasanov 

114 

     is called a characteristic determinant and is found as follows   

                    
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(8) and auxiliary determinant   ,,x  is found as follows  
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where Cauchy function   ,,xg  is found as follows [5] 
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V  is an algebraic complement of the fourth row element of  Vronskian    ,V  . 

To find the asymptotic of eigenvalues of spectral problem (4), (5) let’s introduce the follo-

wing notations :  
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Now to find asymptotic of eigenvalues of spectral problem (4), (5) consider the following 

theorem: 
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Theorem1.   Suppose,that  ,mk mk   ( 1,4 ; 1,3 )m k   are complex numbers.  Then the ze-

ros of the characteristic determinant     are countable set, single  limit points of which is 

  and the following formulas  for the asymptotic zeros are true:  
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Proof 

Based on the property of determiant, the   , found by formula (8) can be rewritten as 

follows: 
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To find the main part of determinant    let’s use the traditional method, that is equate 

the real part of exponents in pairs and selecting the straight lines or semi-straights, we’ll get [1,3]: 
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Choose those of the semi-strips, constructed from the above-mentioned semi-straights, 
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In the second quarter the main part has the form: 
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The main part in the third quarter has the form 
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here 0  and R  is sufficiently large number. 

Firstly, solve equation 0)(1   . For that introduce following notations: 
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To find roots of the equation 0)(1    consider a following formulas [9] 
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It is easy to check, that n1  are simple poles of the function )(11  . According to that, we’ll get 
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Taking into account n1  and )1(1g  into the last equality, we’ll get: 
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After solution the equation )4,3,2(0)(  kk   by the same way we’ll get following 

asymptotic formulas: 
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Substituting )4,3,2( kkn  into equalities for 
4

kn  )4,3,2( k we’ll get formula (10). The 

theorem is proved. 
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As it is known, that at equation (1) is parabolic in the sense of Shilov [10]. A following 

theorem allows us to find solution of the mixed problem (1)-(3) not only in case of parabolic in 

the sense of  Shilov, but also wider classes: 

Theorem 2. Suppose ,that  function )(x are satisfies to a following conditions    1,02Cx  , 

        01010   .If  00 A , coefficients of the boundary conditions are complex 

numbers and 0 0
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 , then mixed problem (1)-(3) has following solution  
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here   ,,xG  is a Green function of the corresponding spectral problem , 
kn  

 ,...3,2,1;4,1  nk  are all zeroes of the characteristic determinant )( . 

Proof.  Let’s search solution of the mixed problem (1)-(3)  as follows 
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Taking into account (12) into (1) and (2) we can find  function   ,,tz  in such form  

          .)(,,
4

  tietz  . 

Taking into account the last into (13), we will get formula (12). 

From condition 00 A  can be said, that problem (4), (5) is regular [4,5]. It means, that out of 

0   neighborhood of zeros of the characteristic determinant )(  inequality  
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is true, where   ,,xM k
 are positive,  bounded with respect to x  and   functions and 

analytic function with respect to  -complex parameter.  At the same time, under condition  

00 A  and     1,02Cx  ,         01010    for the function  x  following 

formula of decomposition is true [5]: 
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Taking into account (15) we can see that series given by formula (12) satisfies to initial 

condition. As the Green function   ,,xG  is a solution of the homogeneous equation, 

corresponding to (4), (5), the series (12) formally satisfies to the boundary condition (2).   

It is necessary for (12) and series, obtaining by differentiating it four times with respect to x , 

and ones with respect to convergence uniformly and absolutely. For that, taking into account 

conditions of the theorem and asymptotic of eigenvalues, defined by formula (10) we’ll get: 
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It shows, that if  0 0
0

0

1
0, Im sin1

4

B C
A

A


 ¨̈  ̈ formula satisfies according  to Weierstrass 

theorem the functional series (12)  uniformly and absolutely convergence. It means that our 

search formal operations are justified. 

The theorem is proved. 
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