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The article solves a stationary hydromechanical problem about the movement of 

anomalous oil in a round cylindrical pipe according to the law of friction, i.e., 

according to the modified Maxwell model. When solving this problem, it is 

assumed that the direction of oil movement will coincide with the direction of the 

pipe axis. Between the 1st and 2nd cross sections of the pipe, a part with a 

length is taken. In this part of the pipe, radius size calculations are taken from 

the pipe axis. The speed of oil movement depends on the radius and decreases as 

it increases. At :  𝑟 = 𝑅 :  𝑣 = 0 . 

From the condition of equilibrium of two forces, that is, the pressure force and 

the friction force, an expression was found for the radius of the flow core. 

Formulas are presented for the initial pressure ∆𝑃 drop and for the shear stress  

𝜏 . To solve the differential equation of anomalous oil, a technique was used to 

replace a complex differential with a simple differential. A formula has been 

derived for the total oil flow rate in a pipe; a formula for pressure loss in the 

laminar mode of movement of anomalous oil in a pipe has been extracted. When 

∆𝑃 ≤ ∆𝑃0 the liquid in the pipe does not move, it remains at rest. 
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The article solves a new hydromechanical theoretical problem about the rectilinear 

stationary movement of anomalous oil in a round cylindrical model, that is, according to 

Maxwell’s law of friction [1]. 

To solve this problem, it was assumed that the direction of oil movement would coincide 

with the direction of the pipe axis. 

In Fig. 1 shows a schematic drawing of a given oil pipe. Between the first and second cross 

sections of the pipe, a part of it with a length of  𝑙 . In a given part of the pipe, the radius  𝑟  

dimensions were calculated using the pipe axes. 

The speed of movement of visco-plastic oil  𝑣  depends on the radius  𝑟 and decreases as  𝑟  

it increases. In the inner surface of the pipe it reaches its lowest value. At:  𝑟 = 𝑅 :  𝑣 = 0 . 
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Fig.1. Schematic drawing of a round cylindrical pipe 

Due to the fact that as the radius  𝑟  increases, the speed of oil movement decreases, then the 

velocity gradient   
𝑑𝑣

𝑑𝑟
  receives a negative value (-). Therefore, from the point of view of geometry, 

it represents an obtuse angle, which is known to be a negative quantity (-). 

The modified model – Maxwell's law of friction has the form: 

𝜏 = ƞ
𝑑𝑣

𝑑𝑟
+ 𝜏0𝑒−

𝑡

𝑇   ........................................  (1) 

As you can see, this expression has three constant parameters, which are physical 

characteristics of the liquid (in this case, oil): ƞ – coefficient of structural viscosity,  𝜏0  - static 

shear tightness,  𝑇 - period of relaxation (weakening). 

In formula (1)  𝜏 – tangential tightness,  𝑒 – base of natural logarithm,  𝑡 –   flow time of the 

technological process. 

Equation (1) at  𝜏 > 𝜏0  expresses the movement of the fluid. During movement, tangen-tial 

tightness  𝜏   must always be greater than the static shear tightness 𝜏0  and  
𝑑𝑣

𝑑𝑟
   as shown abo-ve, 

it can be a (-) value. 

When 𝑟 = 𝑅  the tangential tightness in the inner surface of the pipe reaches its maxi-mum 

value. As the pipe approaches the axis, the tangential tightness decreases and at the radius  

𝑟 =  𝑟0 : 𝜏 > 𝜏0 ; that's why  
𝑑𝑣

𝑑𝑟
= 0 . A flow core with a radius  𝑟0  moves like a rigid body. 

 Let us determine the value of the radius of the flow core 𝑟0 from the condition of equili-

brium of two forces:  

1) The pressure forces acting on the lateral surfaces of the flow core are equal to  𝜋𝑟0
2∆𝑃  ; 

2) The friction forces acting on the surface of the same flow core are equal to  2πr0𝑙τ0 .   

Then we get: 

𝑟0
2∆𝑃 = 2πr0lτ0  .................. (2) 

hence we have: 

𝑟0 =
2𝑙𝜏0

∆𝑃
  ................................. (3) 

As noted above, for fluid movement in a pipe, the tangential tightness of the fluid in the 

pipe must be greater than the ultimate shear tightness, that is to start the movement of liquid in 

the inner wall of the pipe, it is necessary that  𝜏 > 𝜏0. At values of   𝜏 < 𝜏0 , the liquid in the pipe 

does not move. 

R
 

r o
 

I  

I  

II  

II  



Movement of Anomal Oil in the Round Cylindrical Pipe According to Maxwell's Law of Friction 

71 

In fig. 2 shows a graph of the velocity gradient versus tangential tightness. It is part of a 

general curve in the form of an inclined straight line and intersects with the abscissa axis at the 

point  𝜏0 . This graph is expressed by Shulman's friction law.  At  𝜏 < 𝜏0 , as can be seen in all its 

values  τ
𝑑𝑣

𝑑𝑟
= 0. This happens when the speed in the pipe does not depend on the radius and 

remains constant. 

In the inner cylindrical surface  𝑟 = 𝑅  (at  𝜏 < 𝜏0), that is  𝑣 = 0 , as a result, the speed does 

not depend on the radius, in the inner wall of the pipe, the speed is zero at all points. On the 

surface  𝑟0 = 𝑅 when 𝜏 = 𝜏0 the limit equilibrium is not observed and in this case the corres-

ponding value ∆𝑃0 is determined by the following formula:  

 

 

 

 

 

 

 

 

 

Fig. 2. Gradient modulus graph speed from tangential tightness 

∆𝑃0 =
2𝑙𝜏0

𝑅
   ..................................................... (4) 

To start the movement of liquid in a pipe, the following condition must be met  ∆𝑃 > ∆𝑃0. 

Inside the pipe, we select an annular space with an outer radius 𝑟  and an inner radius  𝑟0  

and create a condition for the equilibrium of the tangential forces that act in the surface of the 

selected space: 

2πrlτ − 2πr0lτ0 = π(r2 − r0
2)∆P0 ................. (5) 

From formula (3), we substitute the value  𝑟0  in the equilibrium equation (5) and obtain: 

2πrl𝝉 − πr0
2∆𝑃 = πr2∆P − πr0

2∆𝑃 ........ (6) 

Thus, the equilibrium condition takes the form: 

𝜋𝑟0
2∆𝑃 = 2πrlτ   

From here we have: 

𝜏 =
𝑟∆𝑃

2𝑙
  ………………………………… (7) 

From formula (7), we substitute the value  𝜏  into Maxwell’s equation (1) and obtain: 

𝑟∆𝑃

2𝑙
= ƞ

𝑑𝑣

𝑑𝑟
+ 𝜏0𝑒−

𝑡

𝑇  …………………… (8) 

We divide the differential equation (8) into variables and obtain: 

∆𝑃

2𝑙ƞ
𝑟𝑑𝑟 +

𝜏0

ƞ
𝑒−

𝑡

𝑇𝑑𝑟 = 𝑑𝑣  ……………….. (9) 

 o 

  0 

     dv/dr 
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We integrate equation (9) within the limits from  𝑣  to  𝑣0  and from  𝑟  to  r0 before  𝑟  and 

we obtain: 

∆𝑃

2𝑙ƞ
∫ 𝑟𝑑𝑟 +

𝜏0

ƞ
𝑒−

𝑡

𝑇 ∫ 𝑑𝑟 = ∫ 𝑑𝑣
𝑣0

𝑣

𝑟0

𝑟

𝑟0

𝑟
  ; 

𝑣0 = 𝑣 −
∆𝑃

4𝑙ƞ
(𝑟2 − 𝑟0

2) −
𝜏0

ƞ
𝑒−

𝑡

𝑇(𝑟 − 𝑟0) ................. (10) 

From formula (10) we can derive the formula for the pressure drop in the form: 

∆𝑃 =
1

𝑟2−𝑟0
2 [(𝑣0 − 𝑣)4𝑙ƞ + 4𝑙𝜏0𝑒−

𝑡

𝑇(𝑟 − 𝑟0)] …… (11) 

The total flow of abnormal oil in the pipe consists of two parts: 

1) fluid flow in the flow core:   𝑄1 = πr0
2v0  , 

2) fluid flow in the annular space around the flow core, that is, in the gradient layer:  

𝑄2 = ∫ 2𝜋𝑟𝑑𝑟
𝑅

𝑟0
  . 

The total oil consumption will be: 

𝑄 = 𝑄1 + 𝑄2 = πr0
2 + 2π ∫ rdr

R

r0
  ……………… (12) 

Substituting the value  𝑣0  from formula (10) in formula (12), we get: 

𝑄 = 𝜋𝑟0
2 [𝑣 −

∆𝑃

4𝑙ƞ
(𝑟2 − 𝑟0

2) −
𝜏0

ƞ
𝑒−

𝑡

𝑇(𝑟 − 𝑟0)] + π(R2 − r0
2) ............ (13) 

When  ∆𝑃 ≤ ∆𝑃0  the oil in the pipe does not move. 

Thus, the solution to the problem posed in the article is completed. 

 

CONCLUSIONS 

1.  The article solves a stationary hydromechanical problem about the movement of anomalous 

oil in a round cylindrical pipe according to the law of friction i.e. according to the modified 

Maxwell model. 

2.  When solving this problem, it is assumed that this direction of oil movement will coincide 

with the direction of the pipe axis. 

3.  Between the 1st and 2nd cross sections of the pipe, a part of the pipe with a length of  𝑙  . 

4.  In this part of the pipe, radius  r  size calculations are taken from the pipe axis. 

5.  The speed of movement of anomalous oil depends on the radius  r  and with its increase it 

decreases, at   𝑟 = 𝑅 ;    𝑣 = 0  . 

6.  From the condition of equilibrium of two forces, that is, the pressure force and the friction 

force, an expression was found for the radius of the flow core. 

7.  Formulas are presented for the initial pressure drop  ∆P0  and for the tangential tightness  𝜏. 

8.  To solve the differential equation of motion of anomalous oil in a pipe, a technique was used 

to replace a complex differential with a simple differential. 

9.  A formula has been derived for the total oil flow in the pipe. 
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10.  The formula for pressure loss in the laminar mode of movement of anomalous oil in a pipe 

has been extracted. 

11.  At  ∆𝑃 ≤ ∆𝑃0  the liquid in the pipe does not move, it remains at rest. 
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