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The study investigates the inverse scattering problem for the Schrodinger operator with complex potentials,
considering indefinite discontinuous coefficients on the axis. Using the integral representation of the Jost
solutions on the real and imaginary axes, solved the direct scattering problem. An additional study of the
operator’s spectrum was conducted, scattering data was introduced, and the eigenfunction expansion was
obtained. Integral equations derived play a crucial role in solving the inverse problem and finally prove the

uniqueness theorem for the solution.

1. Introduction

The propagation of plane-wave in the layered medium is described
by the operator L which is given by the differential expression
10) = ——1-y + 4] §
p(x)
in the Hilbert space L, (-0, ).
It is assumed that the function (potential) ¢ (x) is complex-valued
and fulfils condition

/ A+ 1xD Ig ()] dx < oo, (2
and function p (x) has the form

1 for x>0
p(x)—{_l for x<0 &)

The subject of this paper is the theory of inverse scattering problems
i.e. recovery of operators from their scattering data.

Various types of inverse problems involve deducing certain proper-
ties of the given issue from a complete or partial understanding of its
solution.'10 The distinction is somewhat unclear; however, it indicates
that the contrast between a ‘direct problem’ and an ‘inverse problem’
is somewhat arbitrary and is based on the historical evolution of that
specific problem. At this time, there is no general inverse spectral
theory. Even the simplest cases require considerable ingenuity for their
resolution, and none of the inverse problems can be posed unless a class
of coefficients is specified in advance.

The problem under consideration is not only interesting in its own
right but also because it can be reduced to other inverse problems
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in physics. After separating variables, the kinetic equation reduces to
Sturm-Liouville eigenvalue problems with an indefinite function.

The use of complex potentials in the past has allowed for the mod-
elling of neutron absorption. The imaginary potential signifies emission
or absorption. For instance, in the crystal model, the complex potential
is interpreted as representing a ‘prepared’ material. This material is
assumed to be capable of absorption or emission.

The problem of inverse scattering (1)-(3) when ¢(x) = 0 was
first considered by Belishev in,!! where the inverse problem of re-
constructing p(x) from the frequencies and energies of its normalised
characteristic vibrations were studied.

The most complete results for self-adjoint cases (i.e. for real poten-
tials) in the theory of the inverse scattering problem at p(x) = 1 were
obtained for the Sturm-Liouville operators —y” + ¢ (x)y in the classic
papers'%13 and for p(x) # 1 in.! 415

Because the scattering function of a non-self-adjoint operator is not
unitary and, additionally, can have pole-type singularities (the case of
an operator with spectral singularities), generally speaking, it is not
summable. Therefore, it is of particular interest to consider the inverse
scattering problem (1)—(3).

Since ¢ (x) is complex and p(x) changes its sign, the equation /y =
2%y becomes of mixed type and the inverse problems are more difficult
to study and the classical methods are either inapplicable or require
essential modifications.

Inverse scattering problems for the non-self-adjoint Sturm-Liouville
operator L defined by the differential expression (1) without discon-
tinuities (i.e. p(x) = 1) were studied by Lyantse®> on semiaxes and
by Blashak in'® on whole axes where the specific problems were
considered in detail.
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Problem (1)-(3) for the complex-valued, periodic and almost peri-
odic potentials was considered in the papers.!*17-20

Properties of scattering data for the case when ¢g(x) is real and p (x) is
of the form (3) on half axes and the presence of discontinuity conditions
essentially complicates even the study of the direct problem when its
spectral properties are to be determined. Many studies deal with inverse
problems for the Sturm-Liouville operator with different discontinuity
conditions.ve been studied by Z. F.Abd-El-Reheem in.?!

K. R. Mamedov, A. A Nabiev has studied direct and inverse scatter-
ing problems on the real axis for the operator L with real potentials
q(x) and p (x), which is a positive step function, in.'®

V.A. Yurko has dealt with inverse spectral problems on the finite
interval and semi-axis for Sturm-Liouville operators with complex
piece-wise-constant weights.*>

Inverse problems for the complex Dirac operator with the jump
conditions within the interval have been studied by R. Zhang, C.- F.
Yang, and N.P. Bondarenko in.® They proved that Weyl-type function or
two spectra can uniquely determine the potential on the whole interval.

The presence of discontinuity conditions essentially complicates
even the study of the direct problem when its spectral properties are
to be determined.

The paper’s organization is as follows.

In Section 2, using the integral representation (5-6) of the Jost
solutions of Eq. (4) on the real and imaginary axes, we solve the
problem of direct scattering. In Section 3, we studied the spectrum of
the operator L and introduced the scattering data. Section 4 is devoted
to the eigenfunction expansion. In Section 5, we derived integral equa-
tions that play an important role in solving the inverse problem. Finally,
Section 6 proves the uniqueness theorem for the solution of the inverse
problem.

2. Special solutions of the equation I (y) = A%y

Consider the equation
' +q()y=p)y )

where ¢ (x) and p (x) defined by conditions (2) and (3).
It is known'? that solutions of Eq. (4) exist, holomorphic, are unique
and can be represented in the following form

[EGL ) = 4 / Ky (x,0eXdt for +Imi>0,x >0, (5)
X

X
Iy )= et 4 / K, (x,0)e**dt for +Red>0,x <0, 6)
—00

/000 fxm[lKl (X-l)|]2dtdx < oo,

L2 [ Ky Gen)|Pdidx < oo. @

For differentiable ¢ (x) kernels K, (x,7) and K, (x,?) satisfy the equa-
tions

2 2

ﬁKl (x,1) —q(x) Ky (x,1) = %Kl (x,t) for x>0, ®
9? 9?

ﬁkz (x,1) —q(x) Ky (x,1) = ﬁKz (x,1) for x <0, (©)]
where

K, (x,1) = %/ qt)dt for x>0, (10)
K, (x,1) = %/ q(®)dt for x<0. an

It is easy to verify if the kernels satisfy conditions (7)-(10) and the
conditions at infinity

. ’ _ . ! _
lim K (x,1)= (Xlggm K, (x,1) =

(x+1)—o0 (1 2)
= (x+gT—oo Kéx (x’ t) = (X-J‘%T—oo Két (x’ t) =0
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then the functions f(x,4), f; (x,4) can be constructed to obtain
solutions for Eq. (4) with the potential g (x)

—2diK1 (x,x) for x>0
q(x)= dx 13)
—ZEKz(x,x) for x <0
Let [f (x), g (x)] denote the Wronskian of the functions f (x), g (x)
[f).g@] =g - f(x)g x). 14)

Since the Wronskian of any two solutions of (4) does not depend on
x, it coincides with their values for x - +oco0 or x —» —oo0. As a result,
considering of the formulas

fEx D =e(1+0(l), x - +oo,
FE @A) = e (id+o(1), x = +oo
fFxD=e>1+o0(l), x > —oo,
fzi’ (x, ) = e (£A+0(1)), x > —c0

we find
U G A, f7 (D1 =2i2#0 for ImA=0,A#0, 15)
[f;'(x,/l),fz_(x,/l)]=21#0for ReA=0,1#0. ae)

Therefore, the functions fl’r e, A), f] (e ) and the functions
fz+ (x,A), fz‘ (x, 4) are linearly independent solutions of the Eq. (4) if
A # 0, ImA = 0, ReA = 0 accordingly. Consequently, in the case
Im A = 0 solution of Eq. (4) can be represented as a linear combination
of solutions fl+ e, ), f7 (e A) and for the case ReA = 0 as a linear
combination of the solutions f; (¢, D) fy (x, A).

We have
f2+(x,/1)=A(A)f;’(x,/l)+C(/1)fl‘(x,/1)
Iy (XJ»)=B(/1)f1+ (x, )+ D) f] (x,4) a7
ff'(x,/l)= iD(l)f; (x, 1) —iC (D) f} (x, 1)
fi (x4 = —iB(A)f; (e, A+ iA D) [ (x, 4)
where
A() = —[f;(x’;,fﬁ"_(x’m, ie S,
B(4) = A z);fl (X’M, AE S, 18)
cwy=" (x.A;;fz el e s,
Dy = i (Mz);? el ) s,
and

k+1 _
sk={k7”<arg/1<( +2),,} k=03

Lemma 1. The coefficients A(A), B(4),C (4) and D () have the asymp-
totics

A(A)=%+O<%>, les,
B(A)=%+O(%), 1€ S, .
cu)=%+o(i), i€ s,
D(A):%+O(%), 1€ S,

Proof. Let us first prove it for the case 1 € S;. Then it follows from
formula (18) that



R. Efendiev and Y. Gasimov

CW) = = 1f () ff (e D] =
=L O £ 0,4 = £10,0) £ 0, 0] =
AL+ [0 Ky (0.0 e dnliz = K, (0.0)+ [ K, (0.ne¥dr]—
—[1+ [ K, (0,0eMdi[A+ K, (0,00 + [°_ K, (0,ne"dr]} =
= ﬁ{iﬁ - K 0,00+ [;7 Ky _(0,neMdt +i [_ K, (0,1)e"dt—
K, 0.0) [, Ky .0 dr+ (37 K, O.0¢%dr) ([, Ky 0.0 ¢dr) -
—A= Ky (0,0)= [° K, (0.0¢"dt— 4 [ K, (0,1)e*di—
—K, (0,0) [ K, (0, e dt — ( IO K, (©, t)e’“dt) (i K, (0, D€ dt) =
= 55146 =D =K, (0,0)+ K, (0,0)]+
+ /i Ky (0.0¢#dr — K, (0,0) [° K, (0.0)e¥dr+
+(J5 Ky (0.0 dr) (jf)oo K, (0.1) e’“dt) -
— /2 K, (0.0 dr = K, (0,0) fi° K, (0,1)e di—
- (= K, (0, ned1) ( 12K, (, t)e*'dt) +iK, (0,0) —
-i [ K2 (0, e dt — iK] 0.0) =i [ K, (0.n¢dr} =
= % - = L q(tydi— f qg(Odr+ —/0 q(t)dt+0(i)
The remaining equations in formula (19) are proved in a very similar
way.

3. The spectrum of the operator L

We first calculate the kernel of the resolvent of the operator R (1)
to study the spectrum of the operator L generated by the differential
expression (1). We prove the theorem from which we deduce the
existence of the resolvent of the operator R (4).

We use the notation p(L) to represent the resolvent set, o(L) to
represent the spectrum, o,(L) to denote the point spectrum, o,(L)
to denote the residual spectrum, and o.(L) to denote the continuous
spectrum of L.

Theorem 1. The operator L has no purely real and purely imaginary
eigenvalues.

Proof. Eq. (4) has fundamental solutions

FECa, [T (fF 6, fy (xd)

if A#0, ImA =0 (Re A =0). It is possible to write a solution to Eq. (4)
for Im A = 0 in the form of

0
y(x, A) =Cy (e ReM + / K, (x,t)e'Redr)

X

o
+C, <e—"R”X +/ K (x, r)e—l'R”’dz> .
X

Since the principal parts of the solutions are periodic, y(x,4) ¢&
L, (—o0, ), for any non-zero values of C; and C,. The case Re 4 = 0 can
be proved analogously. Consequently, o, (L) = @. Theorem is proved.

Theorem 2. Residual spectrum of the operator L is empty, o, (L) =
Proof. The function g(x) € L, (R), solution of L*(4) = 0 and g(x)
satisfies

—g" (5, )+ g g(x, )= Fp(x)g(x, A). (20)

It is obvious that (20) cannot have a solution that belongs to L, (R),
because it is of type (5). It means that ¢,(L*) = @ or ¢,(L) = @ so
6 (L) =0, (L) and L7! is defined in the dense set in L, (R) for Vi € C..
The theorem is proved.

Using a general method it is possible to prove the following theorem

Theorem 3. For each A from the sector

Sk={k7”<arg/1< (k+21)”}, k=j
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the resolvent of the operator R (x,1, A) exists and has the following form

Ry(x,1,4), A€ S,
R (x,1,1), AES,

R =1 ), A€ S,
Ry(x.1,1), A€ S,
Here
e ffan, t<x,
Ry(x,t,4) = zmcm {f*(t,/l)f;(x,/l), >t AE S,
fFea ) fy @A), t1<x
R 1 2 .
) A= 2’“’“) {ffr(l,/l)fz_(x,i), 1>xt AES o1
f (x,A)f{(t,/l), t<x,
Ry (x,1, ) = z;wu) {f‘(r,/l)fz—(x,,i), t>x 2€52
_ 1 fi (X,ﬂ)f;'(t,ﬂ), t<x
Ry (x,1, ) = 52 {fl’(t,/l)f;(x,/l), fo AE Sy
Lemma 2. For every complex number A ¢ {ReA = 0} U {ImA = 0},

AN #0,B(A) #0,CAD) ;é 0 and D (A) # O there is a one-to-one resolvent
operator R, = (L — A1 )
If we combine Theorems 1 and 2 we obtain the following result

Theorem 4. The continuous spectra of the operator L fills out the axes
{Re 4 =0} U {Im1=0)}
Theorem 5. The finite eigenvalues of the operator L coincide with the

squares of the zeros of the functions A(4), B(4),C (4) and D (2) from the
sectors Sy, k=0,3.

Corollary 1. The functions A (1), B(A),C (A) and the function D (1) have
no zeros on the axes
{Re A =0} U {Im A = 0}

Taking into account Corollary 1, by dividing both sides of the first and
third equation of (17) by C () and the second and fourth by B (1) we obtain
solutions for Eq. (4)

Ui (x,0) = %f;(x,,n—f;(x,x), for ReA=0
U (x4 = 55 f5 (. )= f5 (x.4), for Re4=0 22
Uf (x.0) = ggj))fJ’ () + f7(x, ) for Inmi=0
Us (x,0) = %; fT @D+ £ (x.2) for ImA=0

The functions [U[,U; ] and functions [U +,U2+ ] are known as the
eigenfunctions of the left and right spectral problem.

Definition 1. The functions
DA S = A4 _AW _D»
c e PEg P50

are called the reflection coefficients for Eq. (4).

St =

4. Eigenfunction expansions

In Section 3 we proved that if Im 1 > 0,Re A > 0 then the kernel of
the resolvent of the operator L has the form

1 {ff(x,/l)f;(t,/l), r<x

Rt D= s Uy A fF (e d), 13 x°

ie s,

Lemma 3. For any twice differentiable continuous function y (x) €
L, (o0, 00) and

gx) =-y" () +qX)w (x) € L, (—o0,0)

we have
/ R(x,z,A),;(t)z,u(:)dz=—"’/1 )+% / Rx,t, g (1) dt, (23)
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It is easy to show that if the conditions of the lemma are satisfied,
then

/_m R (e 1, p (0 y (1) di = —"’;2’” + %o (%)

The left side of (23) is the analytic function for A within the contour
of the circle [4] = R except for the points 4 = 4,, n = 1,I. Then for
R — oo we have

y/(x) = =5 [3724d A [SL[Ry (x, 1, 4) =

o 2/1d,1/ [R, (x,1,4) = Ry (x, 1, Dp (O) w (1) di—
—ZL/ 224d4 [ [Ry (x,1,4) = Ry (x,1, D]p () y (1) di—
—2L/ " 20d A [ [Ry (x,1,2) = Ry (x,1, Dlp () w (1) d1+

Ry (x.1, Dlp () (1) di—

(24)

+ Z Res2A( / R(xe,t, ) p(Oy () dD);_; .
n=1 -

Using formulas (17) and (21) we obtain
1

Ry (et )= Ry (5.1.) = 5 /1 G ) /3 1)
Ry (x.1. ) = Ry (x.1, 4) = m FEGD A
Ry (x.t.4) = Ry (x.1, 4) = m )
Ry (x.1.2) = Ry (x.1,4) = m SO fT (02

Then we have from (24)

v =5 /0°° Te A4 o 13 A S A p () (0 di-

- Ow soadA o £ A S5 D p (v (1) di-

+3: 10" Bmem A S 1T G A S (L D (1) di-
=5l am A L ST D fT @ Dp (D w (1) di+

! o
+ ) Res2A( / ROt Dp Oy () d1) - .
n=1 —
Thus the following theorem is proved

Theorem 6. For each w (x) € L, (—o0, o0) we have the following eigenfunc-
tion expansion is valid

v =3 0 ames @A e 13 e DS @D p 0w (1) di=

-5 Ow BEE A T D F5 ) p () w (1 di=

1 ico

3 0T SoemdA [ I D @ Dp )y (1) di-

1 i

~5 o dmg A [ I e A ST Dp Oy (1) di+

(25)

+ 2 Res2A( / R(x. 1. Dp Oy () dD);-,, .

n=1

If the eigenvalues of the function are simple, then

! o
ZRes(Zi/ R(x,t,l)p(t)w(t)dt) =
n=1 -

] ) " = (26)
=Zc,,/ fi G ) 7yt Dp () w (1) dr
n=1 —0o

where

~ *(x,4,), Imi, >0
_ 1 >n) o n
/i (x”l")'{fl—(x,/ln), Im4, <0
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and
LRes L, A, €8,
Cpa=n, C)> "
1 1
—Res—, 1, €S
2 =4, D> Tn =1
C,=ij ) )
—Res—, 1,€S8
)=, B’ =72
1 1
—Res—, 4, €S
cli=a, A’ Tn 3

Note that the formulas (25) and (26) can be written as follows

5 Jo ST T G D A+ s I (e D) T 0

=37 S 1S5 (DT oA I 0 )+ s S G 2) 1 0 Al A=

— o [ AT A+ T G ) f (0 A
b [ U A f7 @A+ £ (D) f (6 Dld A=

=32 L ST )5 0 M) f (60 + 5 /5 (e 2 £ (6 Al

32 L IST L5 o S 0D+ s 5 (6 ) fy (1 N .

- Z cn/ FL G Fy @ Dp 0w () d =6 (x 1)
n=1 —oo
5. Inverse problem

In this section, using eigenvalue expansion (27) we provide the
solution of the inverse scattering problem of recovering the potential
q(x) from the given scattering data S} (4),.5 (4).

First, let us consider the following integrals

Al (x, )= '/000[5; (/1)f1+ (x, ,1)+fl— (x, Dletd

Ay ()= [CLfT (D) + S+ o /1 G DleHd 2

A3 (o0 = [SUT G+ o/ G Dleda
Aty = [0 1S5 () 7 (e )+ £ (x Dle™#d 2
As G =i [ [ST A f] (x, /1)+fl+ (x, A)le"Md A
Ag Cen =1 [0 LT () + 5= T /¥ e da
Ay (0 =i [{TIST ) fF (e )+ T (e, DleHd A

Ay (6 =[P 06 D) + g /7 (o Dled

Using the formula (5) we obtain
A 0D =[S D1+ [ Ky (e de+
+ fxw K, (x,&)e™dE + e }elMd ) =
= fo‘” [e~iHx=D —ie"*("+')]d/1+f0°° [S; (/1)+i]eiﬁ(x+t)di+
+ /3K (08 [ISF () + e d jd g+
+ [P Ky (x,8) [y [em D — e a qd

If we similarly calculate the remaining integrals and calculate the
sum, we obtain the following expression:

8 ©
1
“3r DA SF GO (- DK, ()t / K, (o0 F, (1 4 &) dé.

(28)
where
—27F; (x+10) = [T (ST (A) +i)e* D 4 ( S i) e A+
0 - —iA(x+1) _ i At
+ L Sy () +1i)em +<SN> z>e' H01d A+

+ [y U(ST () +i)eroHD 4

+i [ (ST () +i)e740x+0 4 (

s A(x+1)
) l) e 1dA.
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On the other hand
oM = FE@ D) +/ ALY [T (& A de.
t

This is the reason

A (x 0 = [T IST D ST 6 A+ f7 (s Dleitda =
= [T IS ST D+ ST DT G+ [T AW@E [ (& N delda=
= [ IS FF D FF @D+ 0D 7 (x, Dld At
+[TAWO [T IS ST D ST ED+ FT A fT (x DldAdE.
If we calculate the remaining integral analogously and add the sum,
we obtain that

8 !
"ﬁ ZfA" @D =6(x=0= 3 Cuff (x.4,) M + A1), (29)

n=1
Since for 7 > x, A(t,x) =0, we obtain by comparing formulas (27)
and (28)

F(x+t)+K1(x,t)+/ooK1(x,f)F(t+§)d§:O (30)

where
1
F(x+1)=F (x+0)+ ) Cyehnt*
n=1

The following theorem can be proved in a similar way

Theorem 7. For t > x > 0 the kernel
K (x,1)

of representation (5) satisfies main Eq. (29).
Similarly, the following theorem can be proved

Theorem 8. For ¢ < x < 0 the kernel K, (x,t) of representation (6) satisfies
to the main equation

X

F(x+t)+K2(x,t)+/ Ky (x,E)F (t + &) dE =0, 31

where
Flx+n) == [T1(S) () +i)el#0+ 4 <ﬁ - i> e A4 |+

i 0 — N i 1 . i
=57 [ (S5 (A) + i) 700 <m - )e"l(’”")]d/H

-+ oiw[(S;f(/l)+i)e“X+’>+< !

3 —A(x+1)
2% Sl*'(i) l) € 1d4

— o [ (ST (W) +i)e 0t 4 (; - i) A ]d A+

Sr)
1
+ Z Cwnein(x+r)
n=1

Lemma 1 and the formula (25) guarantee the convergence of these
integrals.

6. Uniqueness

Theorem 9. For any x € [0,), main Eq. (30) has a unique solution
belonging to L,[x, o)

Proof.
Taking into account the estimations
/0:’ |F1 (0] dx < oo,f(f;’ (1+x) |%F1~(x)| dx < oo,
Sl [Py o dx < oo, 5 (1= )| Fy (0] dx < o0

we can state that the kernel F; (¢ + £) generates a completely continuous
operator in space L, (x,o0) for each x > 0. Therefore, it is enough to
show that the homogeneous equation

f(t)+/ SOF+8)dE=0 (32)
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has only a trivial solution in the space L,[x, o).

Let us denote by Z, (¢) the solution of the Volterra integral equation

1
F)=Z 0+ / K(E.0)Z, ()dE 33)

Then from (32) we have

Z. () + /X’ Z OIF+E+KED+ [FF@+uK (& u)duldé+
+[TZ OIFC+8)+ K(g,r)+/¢°° F(t+u) K (& u)duldé =0

From the main Eq. (30) we find
Z,. (1) +/ Z OIFt+E+K(E +/ F(@+u)K (& u)duldé =0.
t ¢

Taking into account estimates

[FOI < [T |F (9)|ds = a ()
IK G| < IF(x+ 9+ [T1K @D F @+ p)lde <
< a(x+y)+a(x+y)f:° |K (x,1)|dt < Ca(x+y), C—constant

and
/ [K(x, ) F(t+pl|dt <K& |+ |[F(x+y)| <Clalx+y)

in Eq. (39) we obtain that Z, (r) = 0 for + > x. This implies f (t) = 0.
The theorem is proved.

Theorem 10. For any x € (—o0,0] main Eq. (30) has a unique solution
belonging to L,(—o0, x]
The Theorem 10 can be proved analogously.

7. Conclusions

In this paper, we discuss plane-wave propagation in the layered
medium. For this purpose, we use complex potentials that have allowed
for the modelling of neutron absorption where the imaginary potential
signifies emission or absorption. Although there are various studies
about the spectral analysis of these problems, many are for regular
Sturm-Liouville boundary value problems. Moreover, our approach to
investigating the eigenvalues and spectral singularities differs signifi-
cantly from other papers. By using the integral representation of the
Jost solutions on the real and imaginary axes, we solved the direct
scattering problem. Integral equations play a crucial role in solving the
inverse problem and ultimately prove the uniqueness theorem for the
solution. It should be noted that a similar investigation can be done for
using new differential operators, such as those presented in.%!0-22
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